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On the Nearly Viscometric
Torsional Motion of Viscoelastic
Liquids Between Shrouded
Rotating Disks
Flow of a viscoelastic liquid in a cylindrical cavity, driven by rotating finite disks
investigated. The cylindrical sidewall is fixed and the covers rotate with different ang
velocities either in the same or in opposite directions. A regular perturbation in term
the angular velocity of the caps is used. The flow field is resolved into a primary azim
stratified viscometric field and a weaker secondary meridional field. Results are pres
for a range of cylinder aspect and cap rotation ratios and viscoelastic parameters. I
esting instabilities of the fluid of second grade are discussed. The controversy surrou
the sign of the first Rivlin-Ericksen constant is completely irrelevant to the discussio
is shown qualitatively that loss of stability occurs repeatedly and bifurcating flows e
for critical values of an elasticity parameter at fixed aspect and cap rotation ra
Branching flows also occur at a fixed value of the elasticity parameter for critical va
of the cap rotation ratio, when the aspect ratio is fixed.@DOI: 10.1115/1.1651538#
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1 Introduction
Flow in a cylindrical cavity driven by rotating finite shroude

disks is interesting both from theoretical and technological po
of view. Theoretically it provides a good test to pass for const
tive equations simulating the class of nearly viscometric flo
when angular velocities of the end caps are small. It may also
a host of applications in the industry when the working fluid
either Newtonian or non-Newtonian. This type of flow is releva
to gas centrifuges, computer disc drives, rotating machinery,
cometry, etc. In particular, geometries with large aspect ratios m
find applications in chemical mixers and rotating heat exchang

The Newtonian problem has been rather extensively inve
gated starting with Dorfman and Romanenko@1#, and Pao@2,3#.
Later contributions include those of Dijkstra and Van Heijst@4#
and Duck@5#. The first publications in this area concerning vi
coelastic flows, to our knowledge, are by Kramer and Johnson@6#
and Hill @7#. A new constitutive equation for slow, nearly visco
metric motions of viscoelastic liquids is derived in the former, a
applied to the motion of a viscoelastic liquid driven by the rot
ing top cap of a cylindrical cavity of aspect ratio one. The lat
provides experimental validation of the theory developed
Kramer and Johnson@6#. The swirling flow of viscoinelastic and
viscoelastic fluids driven by therotation of a disk in a cylindric
casing has been investigated recently by Escudier and Cullen@8#,
Itoh et al. @9,10#, Moroi et al. @11,12#, and Stokes et al.@13,14#.
Neither of the early papers,@6,7#, considers the effect of the aspe
ratio and the effect of the differentially rotating end caps, eithe
the same sense or in opposite directions, and none of the re
investigations explores the effect of the differentially rotati
disks. In addition to both of these effects we consider the in
ence on the flow field of the varying elasticity of the fluid an
provide a detailed description of the flow field including intere

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
2001; final revision, Sept. 19, 2003. Associate Editor: L. T. Wheeler. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineering
versity of California–Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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ing bifurcating flows which may happen for either critical valu
of the elasticity at fixed cap rotation ratio or critical values of t
cap rotation ratio at fixed elasticity when the structure of t
working fluid is that of the fluid of second grade. The fluid
order two or equivalently the fluid of second grade is widely us
to describe qualitatively the behavior of slightly viscoelastic flui
in steady nearly viscometric motions. The present study is imp
tant to point out the limitations of the fluid of second grade.

Our analysis is set in the context of the fluids of grade N,

S5(
1

N

Si , S15mA1 , S25a1A21a2A1
2

(1)
S35b1A31b2~A2A11A1A2!1b3~ trA2!A1 , . . .

wherem, a i , andb i are the constitutive constants of the fluid
grade one~Newtonian! two and three, respectively.An is the
Rivlin-Eriksen tensor of ordern which can be obtained from the
recursion formula,

L5gradu, 2D5L1LT, A152D,

An115An1LTAn1AnL .

We use a perturbation algorithm in terms of the angular veloc
of the end caps to resolve the field into a primary, azimuth
vertically stratified viscometric field and a weaker secondary fi
in the meridional plane. The former and the latter are first a
second-order effects, respectively, inV, the common denominato
of the angular velocity of the caps. The ongoing controversy ab
the sign associated with the first Rivlin-Ericksen constanta1 is
completely irrelevant to our analysis. That is because the elast
parameter which governs the meridional field at the second o
is defined in terms of the suma11a2.0 anda1 does not appear
anywhere by itself. Also, the instabilities we discuss occur
rather small values of the elasticity parameter in question. Th
fore any objection to the use of the fluid of second grade on
grounds that it may be good enough only for slightly viscoelas
liquids does not have any support.

The analysis could be easily extended to the third and fou
orders to provide further corrections to the primary azimuthal a
secondary meridional fields, respectively. But these correction
not change the qualitative description of the field. On the ot
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ni-
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hand, if the liquid is strongly shear-thinning, the azimuthal visc
metric field will be noticeably affected. A correction to the fir
order may have to be made by extending the analysis to the
order in the algorithm where the parameter (b21b3) defining the
shear dependent viscosity behavior of the liquid appears for
first time. (b21b3) is negative and positive, respectively, fo
shear-thinning and shear-thickening liquids. Our analysis th
fore takes into account only the elasticity of the liquid and wo
better for liquids with rather large second order range. For
stance, polyacrylamide solutions of any concentration hav
rather small second-order range whereas solutions of methacr
copolymer in oil have considerably larger second order range

We present a complete discussion of the change in the flow
with changing aspect ratio and rotation ratio of the caps fo
range of elasticity parameters. In particular, we show numeric
that repeated loss of stability and subsequent bifurcations occ
the flow field of the fluid of second grade for both counter a
same sense rotation of the caps at almost any aspect ratio
critical values of the elasticity parameter and cap rotation rati

2 Mathematical Analysis
The flow configuration is shown in Fig. 1. The relevant fie

equations and boundary conditions read

r
Du

Dt
52¹F1¹•S, ¹•u50, (2)

u~r ,0!5lrVeu , u~r ,2d!5rVeu , u~a,z!50, (3)

whereS is the extra stress given by~1!1 and F is the modified
pressure field which includes gravitational effects. We note th

u5Uer1Veu1Wez , U~V!5U~2V!,

V~V!52V~2V!, W~V!5W~2V!, (4)

and expand (U,W) and (V) in power series even and odd inV,
respectively, with the coefficient of thenth-order term in the series
thenth-order partial derivative evaluated atV50. The extra stress
S is expanded in a Fre´chet series around the base state, the stat
rest.

Fig. 1 Flow configuration
306 Õ Vol. 71, MAY 2004
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2.1 First-Order Solution. The first order problem is ob-
tained from Eqs.~1!–~4!

Du~1!50, ¹•u~1!50, u~1!5V~1!eu , (5)

u~1!~r ,0!5lreu , u~1!~r ,2d!5reu , (6)

u~a,z!50, u~0,z!,1`. (7)

The problem defined by Eqs.~5!–~7! is reformulated in terms of
dimensionless~j,h!-coordinates and a dimensionless azimuth
velocity n obtained from the corresponding dimensional variab
by dividing with the disk radiusa.

1

j
~jn ,j! ,j2

n

j2
1n ,hh50,

n~j,0!5lj, n~j,2d!5j, n~1,h!50, n~0,h!,`,
(8)

j5
r

a
, h5

z

a
, d5

d

a
, n5

V~1!

a
.

The solution reads

n~j,h!5(
k

BkJ1~Akj!@lCh~Akh!1CkSh~Akh!#,

(9)

Bk5
2

AkJ2~Ak!
, Ck5

12lCh~2Akd!

Sh~2Akd!
, J1~Ak!50,

whereJ1 andJ2 are the Bessel functions of the first kind and fir
and second orders, respectively. The convergence of~9! to the

Fig. 2 Level lines of azimuthal velocity: dÄ0.5; caps counter-
rotating with the top cap twice as fast as the bottom, lÄÀ2

Fig. 3 Level lines of azimuthal velocity: dÄ0.5; same sense
rotation with the top cap rotating twice as fast as the bottom,
lÄ2
Transactions of the ASME



Fig. 4 Contour lines of the dimensionless Newtonian second-
order stream function dÄ2, lÄÀ2

Fig. 5 Meridional flow configurations in a tall cylinder, dÄ2, at
fixed cap rotation ratio zlzÄ2, with varying dimensionless elas-
ticity parameter b. „a… bË0.01; „b… bËbcr ; „c… bÄbcr¿«; „d…
bÄbcrÀ«; „e… bÄb̂cr¿«; „f… bÌb̂cr ; „g… bšb̂cr ; „h… bÄ0.1.
Journal of Applied Mechanics
Fig. 6 Meridional flow configurations in a tall cylinder, dÄ2, at
a fixed value of the elasticity parameter b such that bËb̂cr ,
with varying cap ratio l. „a… À2ËlËÀ1; l\À1; „b… lÄÁ1; „c…
À1ËlË0; l\0; „d… lÄ0 „e… 0ËlË1; l\1; „f… 1ËlË2; l\2; „g…
lÄlcr¿« „h… lÌlcr „i… lšlcr .

Fig. 7 Same as Fig. 6 except for bÌb̂cr . „a… lÄÁ1; „b… À1
ËlË0; l\0; „c… lÄ0; „d… lÄlcr¿« „e… lÌlcr ; „f… lšlcr .
MAY 2004, Vol. 71 Õ 307
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ramp functions on the top and bottom caps is quite good, e
cially when Cesaro sums are used. For instance, in the case o
top cap, we compute the Cesaro sumn̄N(j,0) as

n̄N~j,0!5
1

N11 (
1

N

nm~j,0!, nm~j,0!52l(
1

m
J1~Anj!

AnJ2~An!
.

Representative level lines of this primary, azimuthal field a
given in Figs. 2–3 for one aspect ratiod50.5 and cap rotation
ratiosl522, 2. We note that Newtonian solutions of the type~9!
were given first by Hort@15#. Figures for the level lines of the

Fig. 8 Bifurcated flow field configuration in the meridional
plane. b is slightly larger than bcr . bÄ0.03, dÄ2, lÄÀ2.

Fig. 9 Bifurcated flow field configuration in the meridional
plane. b is slightly larger than b̂cr . bÄ0.0375, dÄ2, lÄÀ2.
308 Õ Vol. 71, MAY 2004
pe-
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primary, azimuthal field for other cap rotation ratiosl521, 0, 1
investigated in this paper are not included here in the interes
space. Level lines forl521, 1 look very much like level line
patterns forl522, 2 in Figs. 2 and 3, respectively, except th
there is now symmetry with respect to the midline~plane! in the
radial direction. And the level lines for the case of top cap at r
~l50! show an almost rigid body rotation close to r;0, that is
fluid rotation is very much like in concentric annuli close to th
axis of rotation of the finite bottom disk.

Fig. 10 Dimensionless meridional stream function contours.
bÄ0.1, dÄ2, lÄÀ2.

Fig. 11 Dimensionless meridional stream function contours.
bÄ0.03, dÄ2, lÄÀ1.
Transactions of the ASME
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2.2 Second-Order Solution. At the second order the Stoke
problem obtained from Eqs.~1!–~4! reads

2ru~1!
•¹u~1!52¹F~2!1¹•S~2!, ¹•u~2!50, (10)

u~2!~r ,0!5u~2!~r ,2d!5u~2!~a,z!5u~2!~0,z!50. (11)

The extra stressS(2) is obtained from~1!. We introduce dimen-
sionless velocity and pressure fieldsU and P and dimensionless
parametersb andb* defined as

U5
u~2!m

ra3
, P5

F~2!

ra2
, b5

a11a2

ra2
, b* 5

2a11a2

ra2
,

Fig. 12 Same as Fig. 11 except for bÄ0.0375

Fig. 13 Same as Fig. 11 except for lÄ0
Journal of Applied Mechanics
sand express~10!1 in terms of dimensionless coordinates~j,h! de-
fined in ~8!,

DU5¹P1
2

j
@2b~b21c2!2n2#ej2b* ¹~b21c2!. (12)

The variables (b,c) in ~12! are defined in terms of the dimension
less first-order azimuthal velocityn,

b5n ,j2
n

j
, c5n ,h , n5

V~1!

a
.

Fig. 14 Same as Fig. 13 except for bÄ0.0375

Fig. 15 Bifurcated meridional flow field configuration. b is
slightly larger than bcr ; bÄ0.03, dÄ1, lÄÀ2.
MAY 2004, Vol. 71 Õ 309



We note that the combinations of the Rivlin-Ericksen constantsa1
and a2 which appear in~12! are related to the first and secon
normal stress differencesN1(k) and N2(k), respectively, in the
following way:

a11a25 lim
k→0

S N112N2

2k2 D , 2a11a25 lim
k→0

N2

k2
,

Fig. 16 Bifurcated meridional flow field configuration. b is
slightly larger than b̂cr ; bÄ0.0375, dÄ1, lÄÀ2.

Fig. 17 Dimensionless meridional stream function contours.
bÄ0.1, dÄ1, lÄÀ2.
310 Õ Vol. 71, MAY 2004
d

Fig. 18 Dimensionless meridional stream function contours.
bÄ0.0375, dÄ1, lÄ0.

Fig. 19 Contour lines of the dimensionless Newtonian
second-order stream function; dÄ0.5, lÄ2. If lÄÀ2, the field is
qualitatively the same with a stronger and weaker corner and
central eddy, respectively.

Fig. 20 Bifurcated meridional flow field configuration. b is
slightly larger than bcr . bÄ0.02, dÄ0.5, lÄÀ2.
Transactions of the ASME
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where k is the shear rate. Introducing a dimensionless stre
function C and taking the curl of~12! twice, the momentum bal-
ance at the second order can be rewritten as

L2C52n ,h
2 24b~b21c2! ,h , C5

mc

ra5
,

L5~• ! ,jj2
1

j
~• ! ,j1~• ! ,hh , (13)

to be solved subject to the boundary conditions obtained fr
~11!,

C~j,0!5C ,h~j,0!5C~j,2d!5C ,h~j,2d!50, (14)

C~1,h!5C ,j~1,h!5C~0,h!5C ,j~0,h!50. (15)

It is worthwhile to note that the dimensionless parameterb*
which represents second normal stresses does not play a ro
shaping the flow field but enters the determination of the pres
field. The modified second-order momentum balance~13!1 subject
to ~14!, ~15!, is solved using a novel numerical technique app
priate for fourth-order operators generated by operators of
Stokes-Beltrami type given in~13!3 , Siginer and Knight@16#. In
this paper we adopt the aspect and rotation ratiosd50.25, 0.5, 1,
2 andl522, 21, 0, 1, 2 and investigate the effect of the increa
ing elasticity of the liquid on the flow field at fixed cap rotatio
ratio together with the effect of the varying cap rotation ratio
fixed elasticity. Results are presented in Figs. 4–22. To sav
much space as possible results ford50.25 which bear striking
similarities tod50.5 are not included.

A comment concerning the torque on the covers is in order.
torqueT depends on the first-order velocity to the second orde
the analysis, and thus is determined entirely by the Newton
stress field up to this order,

Fig. 21 Bifurcated meridional flow field configuration. b is
somewhat larger than bcr . bÄ0.0375, dÄ0.5, lÄÀ2.

Fig. 22 Dimensionless meridional stream function contours.
bÄ0.1, dÄ0.5, lÄÀ2.
Journal of Applied Mechanics
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T52pE
0

a

r 2SZudr5pmVa3E
0

1

j2n ,hdj,

(16)

CM5
T

1
2 rV2a5

5
2p

Re E0

1

j2n ,hdj, Re5
Va2

n
.

Equation ~16! can be computed using~9!. CM and Re are the
torque coefficient and the disk Reynolds number, respectively.
already commented in Sec.~2.1! that the convergence of~9! to the
ramp function on the covers is quite good when Cesaro sums
used. Nevertheless the series converge to zero at both~1,0! and
~1,2d! and consequently in a small neighborhood of either r
fail to represent the ramp function. As a consequence,~16! under-
estimates the torque. A better approximation can be obtaine
one assumes that the boundary layer thickness near the tip
constant,

T5pmVa3S E
0

12«

j2n ,hdj1n ,hU
h512«

~12«!3

3 D «!1.

In practice, there is always a small gap between the disks and
side wall and the singularity is avoided. That the torque increa
very fast as this gap gets smaller has been shown by Schmi
@17#. The singularity is of the form (12«)21 and has almost no
consequence in computing the flow field since its effect is c
fined to the immediate neighborhood of the rims. An excelle
study of singularities of this type is given by Van Heijst@18#.

3 Discussion
Close to the rotating covers of the cavity the primary surfac

of shear are concentric cylinders. Normal stresses acting in
radial direction are generated which compete with centrifug
forces. If there is a balance, stagnation rings may result on
covers.

For relatively high aspect ratios, say two for instance, the sh
layer separating the top and bottom CW and CCW cells, resp
tively, joins a stagnation line on the side wall to a stagnation po
on the axis of rotation both for strong counter and same se
rotation when the liquid is Newtonian~b505b* !, Fig. 4. When
the fluid is only very slightly viscoelastic, strong enough norm
stresses are developed in the neighborhood of the corner o
faster rotating disk and the side wall to overcome centrifu
forces there and make the particles stall in the Ekman and S
artson layers on the cap and side wall, respectively, with the
mation of two stagnation points and a CCW rotating cell arou
that corner, Fig. 5~a!.

As the elasticity of the fluid is on the rise, the stagnation poi
A and B move towards the center on the cap and down the
wall, respectively, pushing C down and D up. At the same ti
increased elasticity generates strong enough normal stresses
neighborhood of the corner of the slower rotating disk and
wall to result in the inception of a CW cell, around that corn
Fig. 5~b!. With further increase in the value ofb, stagnation point
C is pushed further down by the faster growing primary no
Newtonian cell around the corner of the faster rotating top d
and the wall. But it cannot come close to the lower corner~1,2d!,
because the weaker, non-Newtonian corner eddy there is
growing, although at a slower rate than the eddy around the up
corner~1,0!.

Depending on the aspect ratio, whend>1, for a critical value
bcr of the elastic parameterb between 0.02 and 0.03, there is
loss of stability and the stagnation point C suddenly moves o
the slower bottom cap, Fig. 5~c!. The stagnation points H and F
move into the flow field, join up and form a saddle point, Fig
5~d!, 8, and 15. The bifurcated field is made up of CCW upp
right and lower left corner eddies together with CW upper left a
lower right eddies separated by the saddle point~H,F!, Figs. 5~d!,
8, and 15. If the aspect ratio is below one,d,1, this bifurcation
MAY 2004, Vol. 71 Õ 311
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occurs for a critical value ofb5bcr smaller than 0.02. For in-
stance in Fig. 20 whered50.5 andb50.02 it has already oc-
curred. Furthermore, stagnation point D which was on the bot
cap to start with in the Newtonian case,b50, Fig. 19, stays on the
bottom cap when C jumps from the side wall onto the slow
bottom cap. They are joined by a shear layer starting and en
on the bottom cap, encapsulating a CCW eddy, Fig. 20. This is
Newtonian lower corner eddy of Fig. 19, now pushed towards
midspan of the bottom cap.

The saddle point~H,F! moves upwards, towards the faster di
with further increase inb, Fig. 5~c,d!. The stagnation ring C is
pushed further towards~0,2d! squeezing the lower left eddy int
smaller and smaller areas. But C can never make it to~0,2d!.
When b reaches a second critical valueb5b̂cr , stability is lost
again and a second bifurcation occurs for 0.03,b̂cr,0.0375, Fig.
9. The top right corner, normal stress effects dominated eddy,
the lower left centrifugal forces dominated eddy become part
larger cell, separated by a new saddle point~B,D!, Figs. 5~e! and
9. The stagnation points H and F, which formed the former sad
point ~H,F!, now may be conceived of as having moved onto
centerline and side wall, respectively, to form two CW rotati
eddies, a centrifugal forces dominated eddy in the upper left a
normal stress effects dominated eddy in the lower right corn
Figs. 5~e!, 9, and 16. For aspect ratios below one,d,1, this sec-
ond bifurcation occurs for values of the elasticity parame
smaller thanb̂cr,0.03, depending on the aspect ratio, with t
additional change that there is a three-cell structure in the me
onal plane and no saddle point, Fig. 21. The smaller the as
ratio the smaller becomes the critical value ofb at fixed cap
rotation ratio.

Increasing further the elasticity of the liquid results in the m
gration of the saddle point~B,D! towards the slower rotating bot
tom disk, Fig. 5~f!. At the same time the bottom right and the to
left corner eddies grow and decrease in size, respectively. But
time, the stagnation point C does not show a sudden jump onto
centerline as it did when it moved from the side wall onto t
bottom cap as shown in Fig. 5~c!. Instead it moves continuously
first coinciding with~0,2d! and then starting to climb toward th
top ~0,0! on the centerline. By the time it moves onto the cent
line the lower left CCW cell, below the saddle point, is almo
gone. As it keeps moving up, this cell completely disappears,
top left Newtonian cell becomes smaller and smaller, Fig. 5~g!.
Eventually, for values ofb.0.08 the stagnation points A and H
collapse onto~0,0! and the field is made up of two normal-stre
effects dominated CCW and CW rotating cells on top and botto
respectively, Figs. 5~h! and 10.

The above chain of events is somewhat different whend<1. If
d51, increasing the elasticity again leads to the annihilation of
top left Newtonian cell and the disappearance of the saddle p
~B,D!, but now the stagnation point C although it moves towa
~0,2d! on the bottom somewhat, stays on the bottom cap,
even reaching midspan, even for quite high values ofb, Fig. 17.
Whend,1, of the two stagnation points on the bottom cap in F
21 right after the second bifurcation, the one on the right is alm
stationary asb grows, and the one on the left, which defines t
boundary of the only Newtonian cell among the three in Fig.
moves briskly, reaches~0,2d! and is already on the centerline fo
the same value ofb50.1 as in Fig. 17 whend51, Fig. 22.

Next we offer a qualitative analysis of the flow structure in t
meridional plane and of the migration patterns of the stagna
points ~rings! at a fixed value of the elasticity parameterb when
the cap rotation ratio varies from strong counter rotation to str
same sense rotation. We observe that for any aspect ratio, w
ulu>2 and growing at a fixed value ofb, flow and stagnation poin
migration patterns similar to those depicted in Fig. 5, for fixed c
rotation ratio and varying elasticity parameter, are found to oc
in the same order as shown in Fig. 5 whenb,b̂cr with two
successive bifurcations when the cap rotation ratio reaches
critical values. The order of events is almost the same wheb
312 Õ Vol. 71, MAY 2004
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.b̂cr with the exception that now there is only one bifurcatin
flow. Thus b,b̂cr and b.b̂cr define two definitely different
classes of flow structure development and they are analyzed s
rately in Figs. 6 and 7, respectively.

For relatively tall cylinders, sayd52, there exists a four cel
configuration in the meridional plane, when21.l.22, Fig.
6~a!, with the shear layer D-C below the mid plane but moving
with decreasing cap rotation ratio,l→21, and coinciding with
the mid-plane forulu51. Depending on the value ofb, the stag-
nation points on the side wall may or may not have relocated
the dividing shear layer whenulu51 is reached. For instance i
Fig. 11 they are still on the side wall forb50.03, but they have
been on the shear layer already for quite a while in Fig. 12
b50.0375. For larger values ofb they would be located on the
centerline. In Fig. 6 we consider the case of the stagnation po
B and H still on the side wall whenulu51, b,b̂cr and in Fig. 7
we look at the case of the stagnation points B and H located on
centerline whenulu51, b.b̂cr .

As the rotation ratiol→0, curiously enough, the stagnatio
point F on the slower bottom cap remains almost stationary
either case, Figs. 6~c! and 7~b!, as the other stagnation point
move and alter the flow structure. Whenb,b̂cr , stagnation
points D and C move up and converge to the upper right cor
~1,0! gradually squeezing out the CCW, normal stress domina
cell, around that corner. Ultimately A and B collapse onto t
upper right corner~1,0! with D and C quite close to the corne
~1,0!, thereby forming a three cell structure in the meridion
plane, Figs. 6~d! and 13, with a small CW cell in the upper righ
corner. On the other hand whenb.b̂cr , although stagnation
points D and C still converge to~1,0! asl→0, A and B collapse
onto ~0,0! instead of~1,0! as was the case previously whenb
,b̂cr , squeezing out the Newtonian centrifugal force domina
left upper cell, Figs. 7~b,c! and 14, and thereby forming a CCW
cell around the upper right corner.

As l→1, the flow structure development shown in Figs. 6 a
7 for l→0, 0.l.21, is repeated in reverse order. Asl increases
further, the shear layer D-C is pushed further and further do
Fig. 6~f!. For a critical value ofl5lcr a loss of stability and
branching occur, the stagnation points H and F move into the fl
to form a saddle point with upper right normal stress and low
left centrifugal force dominated cells, whenb,b̂cr , Fig. 6~g!.
For instance, ifb is close tob̂cr from below,b,b̂cr , lcr is close
to l52 from above,lcr.2. On the other hand whenb.b̂cr as
l→1, a flow structure similar to the one shown in Fig. 7~b! exists.
As a result the shear layer D-C, as it moves down with increas
l, squeezes the left bottom CCW eddy. Whenl reaches a critical
value l̂cr different from the previouslcr a branching occurs, the
stagnation points F and H move into the flow field to form
saddle point, Fig. 7~d!. For instance, ifb is close tob̂cr from
above,b.b̂cr , l̂cr is close tol52 from below, l̂cr,2. With
further increases inl the saddle point~H,F! moves towards the
slower bottom cap in either case,b.

,b̂cr , and a smooth and con
tinuous transition to a two cell structure occurs as shown in F
6~h,i! and 7~d-f!.

When aspect ratiod is smaller than one, the same chain
events occurs with some variations. For instance whenulu51 the
stagnation points H and B can never be located on the center
no matter how high the value ofb is.

References
@1# Dorfman, L. A., and Romanenko, Yu. B., 1966, ‘‘Flow of a Viscous Fluid in

Cylindrical Vessel With a Rotating Cover,’’ Izv. Akad. Nauk SSSR, Mek
Zhidk. Gaza,1, pp. 63–69.

@2# Pao, H., 1970, ‘‘A Numerical Computation of the Confined Rotating Flow
ASME J. Appl. Mech.,37, pp. 480–487.

@3# Pao, H., 1972, ‘‘Numerical Solution of the Navier-Stokes Equations for Flo
in the Disk-Cylinder System,’’ Phys. Fluids,15, pp. 4–11.
Transactions of the ASME



a

s

h

k

i

n

n

w

irl-
as-

irl-

-

ier-

uid
@4# Dijkstra, D., and Van Heijst, G. J. F., 1983, ‘‘The Flow Between Finite Rot
ing Disks Enclosed by a Cylinder,’’ J. Fluid Mech.,128, pp. 123–154.

@5# Duck, P. W., 1986, ‘‘On the Flow Between Two Rotating Shrouded Disk
Comput. Fluids,14, pp. 183–196.

@6# Kramer, J. M., and Johnson, M. W., 1972, ‘‘Nearly Viscometric Flow in t
Disk and Cylinder System. I: Theoretical,’’ Trans. Soc. Rheol.,16, pp. 197–
212.

@7# Hill, C. T., 1972, ‘‘Nearly Viscometric Flow of Viscoelastic Fluids in the Dis
and Cylinder System II: Experimental,’’ Trans. Soc. Rheol.,16, pp. 213–245.

@8# Escudier, M. P., and Cullen, L. M., 1996, ‘‘Flow of a Shear-Thinning Liquid
a Container With a Rotating End Well,’’ Exp. Therm. Fluid Sci.,12, pp. 381–
387.

@9# Itoh, M., Moroi, T., and Toda, H., 1998, ‘‘Viscoelastic Flow due to a Rotati
Disc Enclosed in a Cylindrical Casing,’’ Trans. Jpn. Soc. Mech. Eng.,64,
~621!, pp. 1351–1358.

@10# Itoh, M., Suzuki, M., and Moroi, T., 2003, ‘‘Swirling Flow of Viscoelastic
Fluids in a Cylindrical Casing,’’Proceedings of the 4th ASME-JSME Joi
Fluids Engineering Conference,Honolulu, HI, July 6–10, ASME, New York.

@11# Moroi, T., Itoh, M., and Fujita, K., 1999, ‘‘Viscoelastic Flow due to a Rotatin
Journal of Applied Mechanics
t-

,’’

e

n

g

t

g

Disc in a Cylindrical Casing~Numerical Simulation and Experiment!,’’ Trans.
Jpn. Soc. Mech. Eng.,65 ~639!, pp. 3361–3568~in Japanese!.

@12# Moroi, T., Itoh, M., Fujita, K., and Hamasaki, H., 2001, ‘‘Viscoelastic Flo
due to Rotating Disc Enclosed in a Cylindrical Casing~Influence of Aspect
Ratio!,’’ JSME Int. J. Ser. B: Fluids Therm. Eng.,44 ~3!, pp. 465–475.

@13# Stokes, J. R., Graham, L. J. W., Lawson, N. J., and Boger, D. V., 2001, ‘‘Sw
ing Flow of Viscoelastic Fluids, Part I: Interaction Between Inertia and El
ticity,’’ J. of Fluid Mech., 429, pp. 67–115.

@14# Stokes, J. R., Graham, L. J. W. Lawson, N. J., and Boger, D. V., 2001, ‘‘Sw
ing Flow of Viscoelastic Fluids, Part II: Elastic Effects,’’ J. Fluid Mech.,429,
pp. 117–153.

@15# Hort, W., 1920, ‘‘Die Geschwindigkeitsverteilung im Inneren rotierender za¨her
Flüssigkeiten,’’ Z. Tech. Phys.~Leipzig!, 1, pp. 213–221.

@16# Siginer, D. A., and Knight, R., 1993, ‘‘Swirling Free Surface Flow in Cylin
drical Containers,’’ J. Eng. Math.,27, pp. 245–264.

@17# Schmieden, C., 1928, ‘‘Uber den Widerstand einer in einer Flussigkeit rot
enden Scheibe,’’ Z. Angew. Math. Mech.,8, pp. 460–466.

@18# Van Heijst, G. J. F., 1983, ‘‘The Shear-Layer Structure in a Rotating Fl
Near a Differentially Rotating Sidewall,’’ J. Fluid Mech.,130, pp. 1–12.
MAY 2004, Vol. 71 Õ 313



. The
with
ded,
in the

ility,
aram-
. The
om-
Peter M. Moretti
School of Mechanical and Aerospace

Engineering,
Oklahoma State University,
Stillwater, OK 74078-5016

e-mail: moretti@ceat.okstate.edu

Lateral Deflections of Webs in
Air-Flotation Ovens
A long web span supported by many, regularly spaced, alternating air-bars is studied
focus is on the lateral forces on the web due to the interaction of lateral curvature
out-of-plane deflections. The effect of stretching of the elastic web material is inclu
and the effect of high web speed is handled by distinguishing between the tension
material Tmat and the apparent tension Tapp5Tmat2mv2. The governing partial differ-
ential equations for a continuous representation of the web’s lateral deflection, stab
and control is developed for both straight and cambered webs. The dimensionless p
eters for web-tension effect, web-camber effect, and stretching effect are identified
influence of tilted air-bars is studied, towards developing a control mechanism to c
pensate for camber.@DOI: 10.1115/1.1756922#
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Introduction
In the operation of flotation ovens, lateral deflections have b

observed. This is an important problem, because there is a
for longer air-support ovens to accomplish drying of water-ba
coatings, yet the length of the ovens is limited by our ability
control lateral excursions of the web. For the purpose of analyt
study of an oven containing many similar elements~i.e., regular
undulations between bottom air-bars alternating with top air-ba!,
the entire length of the web within the oven may be represente
a single continuum element with continuous-beam propert
These averaged properties depend on the engagement geome
the alternating air-bars, the air-cushion characteristics of each
the web tension, and the web elasticity.~See Fig. 1.!

Background
The systematic treatment of the lateral deflections of web

paper machines, printing presses, and plastic-film manufactu
and coating, is approached by treating the web as a very d
very narrow rectangular beam under tension,@1#. If the bending
moment exceeds a critical value, putting one edge of the w
under compression which the web cannot sustain without bu
ling, nonlinear effects are introduced,@2#, and the web loses som
lateral stiffness; in web-line operation, there is incentive for ma
taining tension and avoiding a slack edge.

When there is good traction at the rollers, the end condition
the web-as-a-beam are fixed lateral position and slope at the
stream end, and right-angle entry onto the roller at the do
stream end,@1#; this latter condition is frequently employed fo
lateral guiding of webs,@3,4#. The remaining steady-state end co
dition, for the case of full-width traction, is zero lateral curvatu
while entering the cylindrical exit roller, since both edges m
feed through at the same rate. However, tests indicate that,
when traction is sufficient to assure right-angle entry into a rol
there may be partial slip, allowing the fourth end condition
approach zero-moment instead,@5#. This has implications for
cambered~laterally curving! webs and also for moment transfe
across rollers, between spans,@6#.

In flotation ovens, the air-supported web undulates up
down over alternating air-bars; as a result, the extensional stiffn

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, March 12, 20
final revision, November 3, 2003. Associate Editor: W. S. Saric. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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of the web is reduced,@7#. Where there are many repeated supp
elements, we will treat the web as a periodic structure, obtain
equivalent continuous-beam properties. The contribution of e
element to these properties will be obtained from the geometr
relationships between out-of-plane deflections and late
curvature,@8#.

The resulting analysis must explain the observations mad
tests on lateral deflection in air-support conveyance by Ron Sw
son@5#, and further tests on extensional resilience of an air-floa
web by Ron Swanson, Young-Bae Chang, and Peter Moretti@7#:

• lateral forces required to deflect the web are small.
• webs in air-suspension ovens tend to diverge to one sid

the other.
• web camber aggravates the lateral divergence.
• correction/control by tilting air-flotation bars yields sma

improvement.

Mid span Behavior
As we pointed out in an exploratory paper,@8#, there are severa

different factors at play in the lateral deflection of a web in
air-flotation oven:

• A web on air-support bars is supported by the air cushions
a ‘‘springy’’ fashion, permitting deflections in the out-of
plane~usually vertical! direction. Because of the accordion
like undulations of the web, these potential deflections ca
it to be less stiff with respect to longitudinal~MD! extension
as well, which in turn yields less beam stiffness in the late
direction ~CMD!, so that small lateral forces can result
significant deflection to one side or the other. Lateral stiffne
can be improved by using low-flying-height airfoil bars giv
ing ‘‘stiff’’ support, or by using high tension, or by using
shallow undulations.

• When a perturbation causes the mid-span of the web to
flect to one side, and that side of the web curves outward,
inside of the curve floats higher off the air supports, and
outside cinches down tighter on the supports, so that the
tilts over each pad. As a result the normal~lift ! vector of the
pressure force over each pad acquires a lateral force com
nent towards the outside of the curve, tending to increase
lateral curvature further—a destabilizing effect inherent
this geometry.~A secondary effect is a small cross-flow dra
force in the opposite direction.!

• Web camber is one of the perturbations which initiates w
divergence. Furthermore, when a web has camber, the lo
edge of the web will tend to float higher off the air suppor
so that the normal vector of the pressure force will tend
push the web towards the side with the shorter edge.
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• Since the tilt of the web, not of the air-bar, determines
lateral component of the lift vector, tilting air-bars has only
modest effect on lateral dynamics—but it does introduc
secondary effect of biased lateral pressure distribution, w
consequences for both the tension profile and the lateral
forces.

In subsequent sections we will quantify these effects.

Extensional Stiffness

Sinusoidal Geometry. We will approximate the web path
~Fig. 1! by the first term of a Fourier series representation

z~x!5Z1 sin
px

,
2Z3 sin

3px

,
1 . . . >Z sin

px

,
(1)

where, is the spacing between~alternating! air-bars andZ is the
half-amplitude of the undulation. The equilibrium relationship b
tween apparent tension-per-unit-widthTapp,(Tmat2mv2) and the
gage pressurep acting on the flexible web, as shown in Fig. 2,

p~x!52Tapp•
]2z

]x2
5Tapp•ZS p

, D 2

sin
px

,
5P sin

px

,
(2)

where

P5Tapp•ZS p

, D 2

for an average pressure of 2P/p, and a total lift of 2Pb,/p
52bTappZp/,, over each half-sine-wave opposing an air-b
The constant differencemv2 between theapparenttensionTapp
measured from roller reaction forces, and thematerial tension
Tmat observed in the stretching of the web material, is small
most plastic-coating applications; but we will maintain the distin
tion in order to make our equations applicable to high-speed w
as well.

This gives us one relationship between air-pad press
deflection-amplitude, and tension; we need a second relation
to get useful stiffness results.

Pad Pressure Versus Flying Height. In a long series of ex-
periments carried out in the Web Handling Research Cente
Oklahoma State University by Pinnamaraju@9#, Perdue@10#, and
Nisankararao@11#, the pressure field between an air-bar and a
plate was measured, and integrated to obtain the total lift ge

Fig. 1 Nomenclature; the sine wave is drawn with exaggerated
amplitude—actual amplitudes are small, and zbar may be
negative

Fig. 2 Relationship between web curvature y 9 and pressure
distribution p , both shown as functions of x
Journal of Applied Mechanics
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ated by an air-bar. The lift was shown to be a function of t
spacing between air-bar and plate~flying height!. The shape of the
plotted function, shown in an earlier paper,@8#, depends on the
design of the air bar. A theoretical analysis based on ground-e
hovercraft theory was developed by Y. B. Chang et al.@12–14# for
symmetrical ‘‘pressure-pad’’ bars, matching the experimental
sults. Some asymmetrical designs, notably ‘‘airfoil’’ or ‘‘Coanda
bars, give ‘‘stiffer’’ support to the plate, showing more rapid i
crease of lift with decrease in flying height.

Although our flexing web differs somewhat from the flat plat
and the simple pressure distribution assumed for this analys
also different, we can at least conclude that the nominal p
pressureP is a somewhat similar function of the flying height. Th
nominalflying height is (Z2zbar), whereZ is the sinusoidal am-
plitude of the web, andzbar is the distance by which each air-ba
intrudes past a straight line through the oven—a positive num
if the alternating air-bars overlap, negative if they do not cross
central plane. We can generically represent this functional r
tionship as

P5F~Z,zbar!>F~Z2zbar! (3)

For small deflections, it may be convenient to linearize this re
tionship near the design point with an air-cushion ‘‘sprin
constant’’k,2dP/dZ, so that the pressure is

F'Pdesign2k~Z2Zdesign!

dF
dZ

'2k (4)

wherek is typically positive for stable air-bars~i.e., the pressure
drops when the flying height increases!. Alternatively, for larger
deflections, it may be better to fit a hyperbola to the functio
leading to the expression

F>Pdesign3
~Zdesign2zbar!

~Z2zbar!

dF
dZ

52Pdesign3
~Zdesign2zbar!

~Z2zbar!
2

. (5)

If the relationship between pressure and flying height has not b
measured for a particular air-bar, it may be calculated on the b
of hovercraft theory. The applicable ground-effect analys
@12,13#, generally lead to a basic form

F5Po~12e2constant/Z2zbar! (6)

plus some added complexity relating to the difference between
nominal flying height and the actual distance from the edge of
slot to the corresponding location on the web.

Any of these representations ofF(Z2zbar) can be inserted into
Eq. ~2!, solved for tension

Tapp5S ,

p D 2 F
Z

(7)

and differentiated to obtain

dT

dZ
5

21

Z FTapp2S ,

p D 2 dF
dZ G . (8)

This gives us a second relationship between tension, deflec
amplitude, and the pressure function.

Extensibility. The path lengths of the web for each machine
length , ~and the overall web path lengthS for the overall ma-
chine lengthL! is

s5E
0

,A11a2 cos2
px

,
dx (9)

wherea,pZ/,. For a,1, we can use the series solution
MAY 2004, Vol. 71 Õ 315
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,
511

1

4
a22

3

64
a41

5

256
a62 . . . (10)

which shows that, whena2!1,

s

,
>11

1

4
a2511

p2Z2

4,2

ds>
p2Z

2,
dZ

dS>
p2Z

2L
dZ (11)

Inverting theT2Z Eq. ~8! above,

dZ

dT
5

2Z

Tapp2S ,

p D 2 dF
dZ

(12)

we combine it with Eq.~11! to eliminatedZ in the equation for
dS, and obtain

kair,
2dT

dS
>

2L

p2Z2 FTapp2S ,

p D 2 dF
dZ G . (13)

Since alengthenedpathdSshows up as an apparentshorteningof
the web as seen from the ends of the oven,dT/dS is thenegative
of kair , the extensional spring constant per-unit-width of the w
in extension, due to the air-cushioning.

In general, observations,@7#, confirm that extensional stiffnes
increases if tension is increased; in one test, when the we
attached to the end of a stationary web in an air-support oven
doubled and tripled, the natural frequency of extensional osc
tions changed only slightly, indicating that the spring const
approximately doubled and tripled as well.

The extensional spring constantkair obtained in Eq.~13! ac-
counts only for air-cushioned out-of-plane deflection; the defl
tion due to the material’s elastic stretching

kmat5
EmatA

Lb
(14)

must be added to that, so that the total effective spring consta

1

keff
5

1

kair
1

1

kmat
. (15)

In the vicinity of any particular operation point, the total extensi
due to an additional increment of tension is composed of both
air-cushion-geometry component and an elastic-stretching com
nent. The fraction of the additional extension due to theweb ma-
terial’s elastic stretching,j, is

stretch-ratio: j,
1/kmat

1/keff
5

kair

kmat1kair
(16)

and its complement~12j! is the fraction due to the air-cushio
effects:

~12j!5
1/kair

1/keff
5

kmat

kmat1kair
. (17)

If the air-bar characteristics are not available, these extensi
spring constants can be obtained experimentally. Thekmat can be
measured by pulling on the end of the stationary web when the
is turned off, and observing the displacement. Thekeff can be
obtained the same way, but while the air is on, andj determined
from Eq. ~16!. Thenkair can be computed by solving for it in th
Eq. ~15! and the effective air-cushion constantk,2dF/dZ of the
air-support bars backed out from Eq.~13!.
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Lateral Effects

Lateral Bending Stiffness. J. J. Shelton@1# treated a web as
a flat beam, resisting lateral curvature with a lateral bending m
mentEI•y9. The effective value of Young’s modulus for a web o
width b and cross-sectional areaA is obtained from

EeffA5Lbkeff (18)

and

I 5A•b2/12 (19)

so that

EeffI 5
Lb3

12
keff (20)

where keff may be obtained from Eqs.~13!, ~14!, and ~15!, or
directly from an extensional test with the air supply turned on

Thus we can obtain the effective bending stiffness from op
ating parameters and material properties.

Lateral Moments. The complementary way of viewing th
lateral bending stiffness is to consider lateral curvature. Like
tension, bending has both an elastic material and an air cus
component: The total lateral curvature is the sum of two com
nents, the apparent curvature~as seen from a top view! due to the
geometric coupling of out-of-plane deflections with the projec
path,yair9 , plus the curvature due to differential stretching of t
web material by the lateral bending moment,ymat9 :

ytotal9 5ymat9 1yair9

ymat9 5j•ytotal9 5
123Moment

Lb3kmat

yair9 5~12j!•ytotal9 5
123Moment

Lb3kair

ytotal9 5
123Moment

Lb3keff

(21)

The apparent lateral bending componentyair9 , averaged over
multiple elements of air support, requires the path of one edg
the web to become longer relative to the other edge, by an am
b,•yair9 , whereb is the width of the web and, is the length under
consideration. A change in length implies a change in the out
plane amplitudeZ, as derived in Eq.~11! above:

ds

dy
>

p2Z

2,
•

dZ

dy

dZ

dy
>

2,

p2Z
•

ds

dy
>

2,2

p2Z
•yair9 (22)

showing the tilting of the maximum amplitudeZ resulting from
the apparent lateral bendingyair9 . Combining this with theT2Z
relationship of Eq.~8!, we find that the tension profile’sdT/dy is
a function of the nominal tiltdZ/dy.

yair9 5
2p2Z2

2,2FTapp2S ,

p D 2 dF
dZ G •

dT

dy

Moment5
b3

12
•

dT

dy
5Fb3

6 S ,

pZD 2FTapp2S ,

p D 2 dF
dZ G G•yair9

(23)

so that the lateral bending moment is governed by the tilt over
air-bars.
Transactions of the ASME



t

t

r

i

i

d
s

pli-

teral
e

lat-

n

-
n

it

ill

dis-

lib-
the

ngth
n’s

o-
ain
up

to

s.

ller
Lateral Forces. The lateral curvature componentyair9 due to
the geometric effects of the web undulating over and under
support bars has been described in an earlier paper,@8#, and results
in Eq. ~22! which shows the relationship betweenyair9 and tilting
of the maximum amplitudeZ. Along the length of the web, the til
of z is

]z

]y
5

dZ

dy
sinS px

, D5
2,2

p2Z
sinS px

, D •yair9 . (24)

Combining this with the pressure obtained in Eq.~2!, the lateral
component of the pressure force on the sinusoidal web is, on
average,

UFy

,
U5 b

, E0

,

p•
]z

]y
•dx5

b

, E0

,

P sin
px

,
•

2,2

p2Z
sinS px

, D •yair9 •dx

5bTapp•yair9 . (25)

This establishes that the air supports produce a lateral force,
portional to that portion of the total lateral curvaturey9 which is
due to geometric effects:yair9 5(12j)ytotal9 .

Continuum P.D.E.

Straight Webs. Introducing this lateral forceFy52bT•y9
into the partial differential equation for purely lateral motion w
obtain for the total deflectiony

m ÿ12mv ẏ82bTapp•y91EeffIy
+

52bTapp•yair9

52bTapp•~12j!y9

m ÿ12mv ẏ82bTapp•j•y91EeffIy
+50 (26)

observing that the lateral force from tilting tends to cancel
straightening effect of tension, leaving only the fractionj of the
hoped-for benefit. Note that this cancellation is independent of
form of the functionF, whether it is linear, or hyperbolic, o
based on the ground-effect model.

For the equilibrium solution we can leave out the first tw
terms, which contain time derivatives, and rearrange the rem
ing terms to obtain the equilibrium equation

EeffIy
+2jbTappy950 (27)

whereEeffI is the much-reduced value obtained in Eq.~20! above,
Tapp,(Tmat2mv2), andj is the fraction of the web flexibility due
to material elasticity. The apparent lateral stiffness is small ifj is
small;j will have a larger value if the web flexibility due to the a
cushioning can be kept small by means of small amplitudesZ and
high stiffnessdF/dZ. However, the equation is basically stable
Tapp is positive ~it goes unstable for negative values exceed
Euler’s buckling load!.

If we normalize the dimensionsx andy by dividing them by the
span-lengthL, the dimensionless form of the equilibrium equatio
yields the independent parameter

stretch-parameter: Pj,jbTappL
2/EeffI (28)

to govern the solutions.

Cambered Webs. When the web is cambered with an inhe
ent lateral curvatureYo9 , two terms in our equations are modifie
the beam stiffness term becomes zero when the web follow
natural camber, and the lateral force is zero when the web is le
Journal of Applied Mechanics
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m ÿ12mvwebẏ82bTappy91
]2

]x2
EeffI ~y92Yo9!

5bTapp•~Yo92yair9 !

5bTappYo92bTapp~12j!y9

ÿ12mvwebẏ82bTapp•j•y91
]2

]x2
EeffI ~y92Yo9!5bTapp•Yo9

(29)

If the camber is constant along the length of the web, this sim
fies to

m ÿ12mvwebẏ82bTapp•j•y91EeffIy
+5bTappYo9 (30)

so that our governing equation has acquired a constant la
force-per-unit-lengthf y5bTYo9 , acting towards the concave sid
of the web camber. The equilibrium equation is

EeffIy
+2bTapp•j•y95bTappYo9 . (31)

Because of the reduced effective beam stiffnessEeffI and the con-
siderable length of most air-flotation ovens, the effect of any
eral loadf y is considerable.

If we normalize the dimensionsx andy by dividing them by the
span-lengthL, the dimensionless form of the equilibrium equatio
yields the additional independent parameter

camber-parameter: P f,bTappYo9L
3/EeffI . (32)

Boundary Conditions. At the entry to the span, the displace
menty(x50) and the slopey(x50)8 are given; we establish the origi
and alignment of the coordinates to make both of them zero:

y~x50!50
(33)

y~x50!8 50.

In practice, the exit roller will be guided to maintain the ex
displacement at

y~x5L !50 (34)

by slanting the roller within the plane of the web, so that there w
be an exit angley(x5L)8 5uex . The fourth boundary condition is
more difficult, especially in the presence of web camber, as
cussed by Ron Swanson@5#.

If roller traction is good and moments are moderate, equi
rium also requires that there must be a sufficient moment at
exit to insure that the both sides of the web have the same le
as they feed through the roller, so that we have Swanso
moderate-spanfull-width-traction boundary condition

y~x5L !9 50. (35)

This condition would break down in the presence of large m
ments at the exit if the tension were not sufficient to maint
traction across the entire width of the roller, and we would end
with Swanson’s long-spanpartial-slip boundary conditiony(x5L)9
'Yo9 , indicating that the unequal-length edges would manage
slip through.

Equilibrium Solution. In terms of the parameters from Eq
~28! and ~32!, our governing Eq.~31! is

y+2
Pj

L2
y95

P f

L3
. (36)

If we apply Swanson’sfull-width-tractionexit boundary condition
y(x5L)9 50, so that both sides of the web feed through the ro
evenly, the solution is
MAY 2004, Vol. 71 Õ 317
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Fig. 3 Deflection shape, y ÕL versus x ÕL , from Eq. „39…, the low-elasticity equilibrium solu-
tion for a cambered web, for full-width-traction at the exit, with unit camber parameter „Eq.
„32……
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L
5Co1C1S x

L D1A sinSAPj

x

L D1B cosSAPj

x

L D1
P f

2Pj
S x

L D 2

(37)

where the coefficients~derived byMaplecomputer algebra incor
porated inScientific WorkPlacefrom http://www.mackichan.com/!
are

Co5

P f

2Pj
sinAPj2

P f

Pj
~APj2sinAPj!

APj cosAPj2sinAPj

C15

2P f

2APj

cosAPj2
P f

PjAPj

~cosAPj21!

APj cosAPj2sinAPj

A5

P f

2Pj
cosAPj2

P f

Pj
~12cosAPj!

APj cosAPj2sinAPj

B5

2P f

2Pj
sinAPj2

P f

Pj
~sinAPj2APj!

APj cosAPj2sinAPj

.

On the other hand, if we apply Swanson’spartial-slip exit
boundary conditionsy(x5L)9 'Yo9 , so that the moment at the ex
roller is negligible, the solution coefficients change to

Co5

P f

2Pj
sinAPj1S Yo9L2

P f

Pj
D S APj2sinAPj

APj
D

APj cosAPj2sinAPjL

C15

2P f

2APj

cosAPj1S Yo9L2
P f

Pj
D S cosAPj21

APj
D

APj cosAPj2sinAPjL

A5

P f

2Pj
cosAPj1S Yo9L2

P f

Pj
D S 12cosAPj

Pj
D

APj cosAPj2sinAPjL

B5

2P f

2Pj
sinAPj1S Yo9L2

P f

Pj
D S sinAPj2APj

Pj
D

APj cosAPj2sinAPjL
.

AY 2004
t

While these are closed-form solutions, they are difficult to visu
ize; neglecting material stretching leads to conservative solut
which are much simpler.

Low-Elasticity Equilibrium Solution. If the elastic-
stretching parameterPj is very small, the governing Eq.~36! can
be reduced to

y+>
P f

L3
. (38)

If we apply Swanson’sfull-width-tractionexit boundary condition
y(x5L)9 50, so that both sides of the web feed through the ro
evenly, the solution is

y

L
5P fF 1

16 S x

L D 2

2
5

48 S x

L D 3

1
1

24 S x

L D 4G (39)

with an exit guiding angle

uex5y~x5L !8 5
2P f

48
(40)

and the lateral deflection profile shown in Fig. 3. The maximu
excursion ofymax/L50.00542P f occurs atx/L558%.

On the other hand, if we apply Swanson’spartial-slip exit
boundary conditiony(x5L)9 'Yo9 , so that the moment at the ex
roller is negligible, the solution is

y

L
5P fF 1

16 S x

L D 2

2
5

48 S x

L D 3

1
1

24 S x

L D 4G1Yo9LF2
1

4 S x

L D 2

1
1

4 S x

L D 3G (41)

which gives us an exit guiding angle

uex5y~x5L !8 5
1

4
Yo9L2

1

48
P f . (42)

Evidently, the tension/stiffness ratio

tension/beam-parameter:P t/b,P f /Yo9L5bTappL
2/EeffI

(43)

determines the relative effect that any partial slip can have on
nature of the solution. When the value isP t/b58, the deflection
profile acquires an S-shape, the maximum amplitude is redu
and the exit angle reversed, as shown by the dotted line in Fig
indicating that apartial-slip condition at the exit can be beneficia
However, for smaller values ofP t/b , partial-slip can reduce lat-
Transactions of the ASME
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Fig. 4 Deflection shape from Eq. „41…, the low-elasticity equilibrium solution for a cambered
web, for partial-slip at the exit roller (dotted line) for a high value of 8 for the tension Õbeam-
parameter „Eq. „43……, compared with full-width-traction at the exit „solid line …
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eral control: the dotted line in the Fig. 5 shows the lateral exc
sions with partial slippage whenP t/b53.7; it shows thatpartial-
slip can be detrimental whenP t/b,3.7

Lateral Control
One of the suggestions for control of the curvature within

air-flotation oven is to tilt every other air-bar—either the top set
bars, or else the bottom set of bars, or else both sets in opp
directions—in order to introduce a compensating curvature. H
ever, we have noted that the lateral force due to the primary e
of normal pressure forces on the web depends only on the ti
the web relative to our global co-ordinate system, not the tilt
the bars. On the other hand, we see that the web material’s ten
profile depends on the flying height (Z2zbar). Therefore, if there
is a significant contribution of web elasticity to the curvature,
can achieve some control by tilting air-bars.

Let us look at the case where all the top air-bars are tilted by
angle 6a radians, and all the bottom air-bars are tilted by t
same amount in theoppositedirection, for a relative angle o
62a. ~The same result can be achieved by tilting only the top
only the bottom air-bars by 2a.! The lateral forces on the web ar
unaffected, because they depend only on the tilt of the web its
but the tension profile of the web depends on the relative tilt
web and air-bar, and therefore the moments in the web cha
Revising Eq.~23! accordingly,

Moment5
b3

12F 2,2

p2Z
•yair9 6aGF Tapp2S ,

p D 2 dF
dZ

Z
G (44)

Fig. 5 Deflection shape from Eq. „41…, the low-elasticity equi-
librium solution for a cambered web, for partial-slip at the exit
roller (dotted line) for a low value of 3.7 for the tension Õbeam-
parameter „Eq. „43……, compared with full-width-traction at the
exit „solid line …
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we see that the effect of air-bar tilt is similar to the effect of t
camber on moments. A tilta with the proper sign can produc
moments which assist in keeping the web straight.

Let us explore what this means for an inelastic, uncambe
~straight! web, for which y95yair9 : The lateral deflections will
tend towards

F 2,2

p2Z
•yair9 6aG50

y9,57a•
p2Z

2,
(45)

giving us a quantitative indication of the nominal magnitude
steering effects from air-bar tilts. For the small values ofZ/, that
we desire for robustness, only small control effectsy9, are pos-
sible. Conversely, if other considerations lead us to large w
amplitudes, tilt control on some or all bars might be promising

Conclusion

1. The main effect of the sinusoidal shape of the web in
air-flotation oven is to reduce lateral bending stiffness. T
reduction is directly proportional to the reduction of the e
tensional stiffness, insofar as the same ‘‘effective Youn
modulus’’ enters into both MD extension and lateral ben
ing. This makes extensional tests useful for judging late
rigidity.

2. The same measures which raise extensional stiffness
improve lateral rigidity:

a. Choice of air-bars: bars which have been identified in
past experiments as having good flying-height ‘‘stiffnes
will also improve extensional and lateral rigidity.

b. Tension: increased tension will increase the flying-hei
‘‘stiffness’’ as well as reduce sinusoidal amplitude.

c. Air pressure, if it is matched by increased tension to ma
tain low flying height.

d. Air-bar engagement: less engagement means a flatter
with a moderate improvement in stiffness.

These four measures can be useful for controlling late
excursion troubles in ovens.

3. The lateral forces generated by the tilting of the web opp
the straightening effect of tension, indicating that air supp
is inherently destabilizing with respect to lateral position.
the broader field of fluid/structure interactions, this is in t
category of divergent response~rather than the category o
oscillatory response like web flutter!.

4. A remaining effect of tension is to increase the likelihood
good traction at the exit roller, and therefore a greater lik
lihood that the moderate-spanfull-width-traction boundary
MAY 2004, Vol. 71 Õ 319
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conditions apply, rather thanpartial-slip. As a result, in-
creased tension can be counter-productive for straighte
the web. The criterion for whether partial slip at the e
roller increases or decreases maximum lateral excursion
critical value of the tension/beam parameter, Eq.~43!.

5. The main effect of air support is to reduce lateral moments
tension variation in the web, eliminating slack regions a
making longitudinal wrinkles less likely.
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Nomenclature

A 5 cross-sectional area of web~thickness3width b!
b 5 width of web

EA 5 extensional stiffness of web undulating over air sup
ports

EI 5 lateral bending stiffness of air-supported web
F 5 functional dependence of pad pressureP on flying

height (Z2zbar)
k 5 extensional spring constant of web span, per unit

width
L 5 Length of entire web-span within air-flotation oven
, 5 spacing of air-support bars, half-wavelength of sinu

soidal shape
p 5 local gage pressure between air-support bar and w
P 5 maximum gage pressure between air-support bar a

web
S 5 length of web path in air-flotation oven,.L because

of waviness
s 5 length of one-half wave of web,.,

Tapp 5 apparent web tension per unit width, e.g., from
dancer-roller forces

Tmat 5 actual tension in the web material, per unit width
v 5 machine-direction velocity of web
x 5 machine-direction~MD! coordinate, Fig. 1
y 5 cross-machine-direction~CMD! coordinate

Yo9 5 inherent lateral curvature (1/R) of a cambered web
z 5 out-of-plane deflection coordinate, Fig. 1
Z 5 maximum out-of-plane deflection~half-amplitude! of

web
zbar 5 half of engagement~vertical overlap! of bars–often

negative
a 5 lateral tilt angle of air-bar, in radians
k 5 spring constant of air cushion supporting web over

bar
320 Õ Vol. 71, MAY 2004
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m 5 web mass per unit area,4gc ~32.174 lbm-ft/lbf-sec2

or 1 kg-m/N-s2!
j 5 fraction of total deflection due to elastic material

stretching, Eq.~16!
Pj 5 parameter for relative flexibility,jP t/b , Eq. ~28!
P f 5 parameter for lateral force due to web camber,

Yo9LP t/b , Eq. ~32!
P t/b 5 normalized ratio of app. tension to eff. beam stiff-

ness, Eq.~43!
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Finite Element Analysis of Pulsed
Laser Bending: The Effect of
Melting and Solidification
This work developes a finite element model to compute thermal and thermomech
phenomena during pulsed laser induced melting and solidification. The essential ele
of the model are handling of stress and strain release during melting and their retri
during solidification, and the use of a second reference temperature, which is the m
point of the target material for computing the thermal stress of the resolidified mate
This finite element model is used to simulate a pulsed laser bending process, during
the curvature of a thin stainless steel plate is altered by laser pulses. The bending
and the distribution of stress and strain are obtained and compared with those w
melting does not occur. It is found that the bending angle increases continulously a
laser energy is increased over the melting threshold value.@DOI: 10.1115/1.1753268#
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1 Introduction
Laser bending~or laser forming! is a non-contact techniqu

capable of achieving very high precision. The schematic of a la
bending process is illustrated in Fig. 1. A target is irradiated b
focused laser beam passing across the target surface. Heatin
cooling cause plastic deformation in the laser-heated area,
change the curvature of the target permanently. The mechanis
laser bending has been explained by the thermo-elasto-pl
theory,@1–3#. Three laser bending mechanisms, i.e., the temp
ture gradient mechanism, the buckling mechanism, and the up
ting mechanism have been discussed in the literature,@4,5#. For
the temperature gradient mechanism, a sharp temperature gra
is generated by laser irradiation and the residual compres
strain causes permanent bending deformation toward the dire
of the incoming laser beam. Most of the pulsed laser bend
processes are attributed to the temperature gradient mecha
since the short pulse heating duration induces a very sharp
perature gradient near the target surface.

Using a pulsed laser for bending is of particular interest in
micro-electronics industry, where high precision bending, cur
ture adjustment, and alignment are often required. Chen et al@6#
achieved bending precision on the order of sub-microradian
stainless steel and ceramics targets, which is higher than any
bending techniques. The relations between the bending angle
laser processing parameters were studied with the use of a
dimensional finite element method,@7#. In that study, the lase
energy was controlled so that no melting and solidification h
pened during the bending process. However, in some laser b
ing processes where larger bending angles are needed, the
energy used could be high enough to cause melting,@8#.

The finite element method is a general and powerful tool
investigating the complex thermal and thermomechanical pr
lems involved in laser bending,@9–12#. When an unconstrained
material melts, its stress and strain will be completely releas
and then begin to retrieve when solidification starts. In this
spect, the main challenge of simulations is the handling of

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 2
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Applied Mechanics, Department of Mechanical and Environmental Engineering
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stress and strain release and retrieval during melting and soli
cation. The stress release is usually approximated by specif
the temperature dependent material properties, for example,
creasing Young modulus and yield strength significantly near
melting point, @9–12#. On the other hand, the strain release
hardly being considered due to the difficulty involved in the n
merical simulation.

In this paper, a finite element model for simulating pulsed la
bending involving melting and solidification is developed usi
the uncoupled thermal and thermomechanical theory. It is
sumed that the pulsed laser beam is uniform across the widt
the specimen~the x-direction in Fig. 1!. Thus, a two-dimensiona
thermal-stress model can be applied, which greatly reduces
computational time. In order to release and retrieve the stress
strain during melting and solidification, the element removal a
reactivation method is applied to each melted element. In a
tion, in order to compute the stress of the solidified element c
rectly, a second reference temperature for the thermal stress
culation is used. The bending angle, residual stress, and res
strain are obtained and compared with the results of pulsed l
bending without melting.

2 Simulation Procedure
In order to calculate laser bending, a thermal analysis an

stress and strain analysis are needed, which are considere
uncoupled since the heat dissipation due to plastic deformatio
negligible compared with the heat provided by laser irradiation
an uncoupled thermomechanical model, a transient tempera
field is obtained first in the thermal analysis, and is then used
thermal loading in the subsequent stress and strain analys
obtain the transient stress, strain, and displacement distributi
The finite element code, ABAQUS~HKS, Inc., Pawtucket, RI! is
used. As shown in Fig. 2, a dense mesh is generated aroun
laser path and then stretched away in the length and thick
directions~the y andz-directions!. The domain size and laser pa
rameters used in the simulations are given in Table 1. The s
mesh is used for both the thermal and stress analyses. A tot
1200 elements are used in the mesh. Mesh tests are conduct
increasing the number of elements until the calculation resu
independent of the mesh density.

2.1 Thermal Analysis. The thermal analysis is based o
solving the two-dimensional heat conduction equation:

r c̃
]T

]t
5¹•~k¹T!1Q̇ab (1)
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wherek is the thermal conductivity,r is the density of the stain
less steel,c̃ is the derivative of the enthalpy with respect to tem
perature, andQ̇ab is the volumetric heat source term resulted fro
irradiation of a laser pulse. The temperature-dependent prope
of stainless steel 301,@13#, are used in the calculation.

The parameterc̃ is equal to the specific heatcp in solid and
liquid regions. When an impure metal, like stainless steel
heated from a solid state, it begins to melt at the solidus temp
ture Ts and melts completely at the liquidus temperatureTl . In
the mushy zone, i.e., the region where the temperature is betw
Ts andTl , c̃ is defined by

c̃5cp1
L

Tl2Ts
(2)

whereL is the latent heat. Values ofTs , Tl , and L of stainless
steel 301 are listed in Table 2,@13#. By using c̃, the effective
specific heat, the phase change problem can be solved with
single domain. Solid and liquid material are treated as one c
tinuous region and the phase boundary does not need to be c
lated explicitly,@10#.

The laser intensity is uniform in thex-direction and has a
Gaussian distribution in they-direction, expressed as

I s~y,t !5I 0~ t !e28y2/w2
(3)

whereI 0(t) is the time-dependent laser intensity at the cente
the laser beam andw is the laser beam width at the target surfac
The temporal profile of the laser intensity is treated as increa
linearly from zero to the maximum at 60 ns, then decreasing
early to zero at the end of the pulse at 120 ns. Therefore,
volumetric heat sourceQ̇ab in Eq. ~1! can be expressed as

Fig. 1 Schematic of the laser bending process

Fig. 2 Computational mesh

Table 1 Domain size and pulsed laser parameters

Specimen length~y! 600 mm
Specimen thickness~z! 100 mm
Laser wavelength 1.064mm
Laser pulse full width 120 ns
Laser pulse energy 200–300mJ
Laser line width 30mm
Laser line length 1.3 mm

Table 2 Thermal properties of stainless steel 301

Solidus temperature,Ts 1673 K
Liquidus temperature,Tl 1693 K
Latent heat,L 265 J/g
322 Õ Vol. 71, MAY 2004
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Q̇ab5~12Rf !aI 0~ t !e28y2/w2
e2az (4)

whereRf is the optical reflectivity measured to be 0.66 for th
stainless steel specimens.a is the absorption coefficient given b
a54pk/l. The imaginary part of the refractive indexk of stain-
less steel 301 at the laser wavelength 1.064mm is unknown, and
k54.5 of iron is used. The initial condition is that the who
specimen is at the room temperature~300 K!. Since the left and
right boundaries as well as the bottom surface are far away f
the laser irradiated area, the boundary conditions at these bo
aries are prescribed as the room temperature. Convection an
diation with the surrounding are neglected.

Analyses are carried out with the laser pulse energy of 260mJ,
270 mJ, 280mJ, and 300mJ, respectively. The peak temperatu
obtained by a 270mJ pulse is 1703 K, higher than the liquidu
temperatureTl ~1693 K!. For comparison, thermal analyses
three cases without melting are also performed; the laser p
energies are 200mJ, 230mJ, and 250mJ, respectively. The peak
temperature obtained by a 250mJ pulse is 1649 K, lower than the
solidus temperatureTs ~1673 K!.

2.2 Stress and Strain Analyses. In the stress and strain
analysis, the material is assumed to be linearly elastic-perfe
plastic. The Von Mises yield criterion is used to model the on
of plasticity. The left edge is completely constrained, and all ot
boundaries are force-free. Eight-node biquadratic plane-strain
ements are employed.

As in the thermal analysis, the temperature dependent mat
properties are used,@13#. Poisson’s ratio of stainless steel AIS
304, @14#, is used. Considering the incompressibility in the liqu
phase, the Poisson ratio of 0.4999 is used when the temperatu
higher thanTs . The strain rate enhancement effect is neglec
since temperature dependent data are unavailable. Sensitivi
unknown material properties on the computational results
been discussed by Chen et al.@7#.

2.3 The Method of Element Removal and Reactivation
In order to model the phenomena of melting and solidification,
element removal and reactivation method,@15#, is applied. An
element will be excluded from the stress and strain analysis w
its temperature is higher thanTs , i.e., the element is remove
from the domain after being melted and its stress and strain
released to zero. During cooling, the removed elements are r
tivated in the calculation when their temperatures are lower t
Ts and the stress and strain start to retrieve.

For the elements starting to solidify, the initial temperature
the thermal stress calculationTi is replaced with a new initial
temperature equal to the temperature at the moment when
reactivated, i.e.,Ts . This procedure is carried out for each el
ment experiencing melting and solidification with the aid of t
temperature history data obtained from the thermal analysis.

The reason for using a new initial temperature for a reactiva
element is explained as follows. As mentioned before, the ther
stain of an unconstrained element is totally released after it m
During solidification, the thermal strain will change gradua
only if Ts is used as the initial temperature. Otherwise, if the ro
temperatureTi is still used as the initial temperature, the therm
strain will experience a sharp jump from zero to a high valu
which is physically incorrect. Therefore, two initial temperatur
should be used for each element involving melting and solidifi
tion.

The element removal and reactivation would not affect the th
mal analysis since the thermal and the stress analysis are
coupled, and the thermal analysis is performed before the st
analysis. The forces in the element reaching the melting point
reduced to zero gradually before the element is removed, whic
determined by the temperature-dependent stress-strain relat
Therefore, there is no sudden change of stress in element
volved in phase change. On the other hand, when the eleme
reactivated with zero stress, it exerts no nodal forces on the
Transactions of the ASME
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rounding elements. Thus the element removal and reactivatio
not have any adverse effect on the thermal and stress calcula

Based on the above description, the stress and strain for
elements involved in phase change are computed by the meth
element removal and reactivation and the use of a new in
temperature atTs to calculate the stress/strain of the solidifie
elements. During the calculation, element removal and react
tion are tracked for each element since each melted elemen
gins to melt and solidify at different times. Hence, the compu
tion is intensive even for the two-dimensional problem conside
in this work.

3 Results and Discussion
Calculations are first conducted to verify the finite eleme

analysis of melting and solidification. Results of finite eleme
analysis are compared with exact solutions of solidification a
melting problems given by Carslaw and Jaeger@16#. For the so-
lidification case, the target is initially at the liquid state with
uniform temperature. Att50, the temperature at the surfacex
50) is changed and held at a temperature lower than the me
point. Freezing thus starts and proceeds into the material.
position of the solid-liquid interfaced can be calculated with
known material properties, and its expression is given in the in
of Fig. 3~a!. Figure 3~a! shows the comparison of the results.
can be seen that the result of the finite element analysis mat
exactly with the analytical solution. Similarly, results of the me
ing case are also compared. In this case, the target is initiall

Fig. 3 Comparison between the results of FEA and an exact
solution for „a… solidification, „b… melting
Journal of Applied Mechanics
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the solid state at the melting point. Att50, the surface tempera
ture is increased to and kept at a constant temperature higher
the melting point. Again, exact match between the finite elem
result and the analytical solution is obtained, as shown in F
3~b!.

The above calculations are the only ones relevant to the p
lem studied here which have analytical solutions. There are
analytical solutions for thermomechanical problems with so
liquid phase change since these problems are highly nonlin
The rest of this work is focused computing the laser bend
problem involving melting and solidification. We first present d
tailed temperature and residual stress distributions induced
laser pulse at a fixed energy~270mJ!. Then, the laser pulse energ
is varied, and bending with and without melting is compared
terms of the thermal strain, plastic strain, total strain, and str
The dependence of the bending angle on the laser energy is
presented.

3.1 Results of Laser Bending With a Pulse Energy of 270
mJ. The transient temperature distribution in the target in fi
calculated. Figure 4 shows temperature distributions along thx
and z-directions at different times. It can be seen that the ma
mum temperature,Tmax, is obtained at the pulse center an
reaches its peak value of 1703 K at 82.9 ns, and then drops slo
to 446 K at 3.6ms. It can be estimated that the heat affected zo
~HAZ! is around 40mm wide ~the laser beam is 30mm wide!.
Figure 4~b! is the temperature distribution along thez-direction,

Fig. 4 Temperature distributions at different moments „E
Ä270 mJ… „a… along the y -direction on the top surface, „b… along
the z-direction „at yÄ0…
MAY 2004, Vol. 71 Õ 323
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beginning from the upper surface of the target. It can be seen
the temperature gradient during heating period is higher than
K/mm.

Distributions of the transverse residual stresssyy along they
andz-directions are shown in Fig. 5. It can be seen from Fig. 5~a!
thatsyy is tensile, and has a value larger than 1.0 GPa. The str
affected zone in they-direction is about 30mm. In thez-direction,
syy is more than 1.0 GPa within 1.0mm from the surface. It
becomes compressive at a depth of 1.5mm from the surface. The
maximum value of the compressive stress is about 250 MPaz
52.5mm, and it gradually reduces to zero in the deeper regio

Figure 6 shows the deformation distribution along t
y-direction. It can be seen that the permanent bending deforma
is in the direction toward the incoming laser beam and the defl
tion is 42 nm at the free edge (y5300mm). There is a ‘‘L’’ shape
surface deformation aroundy50 mm, the center of the lase
beam. This is produced by thermal expansion along the nega
z-direction because the surface is not constrained.

Detailed information about the thermal strain, the total stra
and the stress for the elements involved in melting and solidifi
tion and computed using the element removal and retrie
method is presented next, together with the case without me
for comparing their values.

3.2 Comparison Between Laser Bending With and With-
out Melting. Strain and stress histories during laser bend
with melting ~270 mJ! are compared with those without meltin

Fig. 5 Residual stress syy distributions „EÄ270 mJ… „a… along
the y -direction on the top surface, „b… along the z-direction
„at yÄ0…
324 Õ Vol. 71, MAY 2004
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~250mJ!. With the pulse laser energy of 270mJ, the target begins
to melt at about 70 ns and is completely solidified after 200
Results of the center element on the top surface are compare

Figure 7 shows histories of the thermal strain. For laser bend
without melting, the thermal strain first increases as the temp
ture rises due to laser irradiation, and reaches a maximum valu
0.0228 at 82.03 ns. It then reduces to zero as the target cools t
room temperature. However, for bending involving melting, the
are three periods in the thermal strain development: heating, m
ing and solidification, and cooling. The thermal strain reaches
peak value of 0.0232 at 69.52 ns. At this time, the correspond
average temperature of the element is 1673 K, which equals
solidus temperature. The element is excluded from the stress
strain analyses when it melts, which lasts for more than 28
When it starts to solidify at 97.52 ns, the initial temperature of
element is replaced by the solidus temperatureTs , and then the
thermal strain starts from zero to retrieve a negative value, wh
decreases continuously and reaches a residual value of20.0229.
The final thermal strain is very different from that of the nonme
ing case because of the use of a second initial temperature.

Transverse plastic strains with and without melting are sho
in Fig. 8. The compressive plastic strains are created during

Fig. 6 Bending deformation along the y -direction „E
Ä270 mJ…

Fig. 7 Transient thermal strain at the center point on the top
surface
Transactions of the ASME
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heating period since the thermal expansion of the heated ar
constrained by the surrounding cooler materials. In the subseq
cooling period, the plastic strain decreases gradually, and is
tially canceled with a residual value of20.0047 for the case with-
out melting. For bending involving melting, the compressive pl
tic strain is created during heating and it is released to zero du
melting. This represents a significant difference between the
cases. Physically, the melted material can not support any s
due to the free surface while the material not melted can supp
relatively large strain because of the surrounding cooler mate
which is exactly what modeled here and shown in the resu
After the melted element begins solidified, a tensile plastic str
develops, and a residual plastic strain of 0.0185 is obtained.

The history of the total transverse strain«yy up to 2000 ns is
shown in Fig. 9. Despite the differences in the thermal and pla
strains, it can be seen that the total strains in both cases ha
similar trend. The total strain increases and then decreases, a
about 100 ns it increases rapidly and reaches the maximum v
at around 400 ns as the target bends away from the laser b
After that, it decreases slowly and the residual value is ab

Fig. 8 Transient plastic strain at the center point on the top
surface

Fig. 9 Transient total strain «yy at the center point on the top
surface
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20.0015 for bending without melting and20.0017 for bending
with melting ~not shown in the figure!. In both cases, the fina
bending angle is positive, meaning in the direction toward
laser beam.

Unlike strain, the overall trend of the stress development is
much affected by melting and solidification. As shown in Fig. 1
the development of the transverse stress follows a similar tr
and a tensile residual stress of about 0.97 GPa is obtained in
cases. This is because the yield stress and the Young’s mod
are reduced significantly at high temperature. Fort the case w
out melting, the stress is released to almost zero near the me
point, while the stress is reduced to zero for the case with melt

Figure 11 shows the relation between the bending angle and
pulse energy. Bending angle increases almost linearly with
pulse energy. The dash line is the fitted line for laser bend
without melting and is extracted to compare with the data w
melting. There is no discontinuity or large change in the relat
between the bending angle and the laser energy when the
energy is increased across the melting threshold. This is in c
sistent with the results of total strain calculations since bendin

Fig. 10 Transient transverse stress syy at the center point on
the top surface

Fig. 11 Bending angle as a function of laser pulse energy
MAY 2004, Vol. 71 Õ 325
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directly related to the total residual strain. As discussed pre
ously, no large change of the total strain is found when the la
energy is increased across the melting threshold.

4 Conclusion
A two-dimensional finite element model for calculating puls

laser bending with melting and solidification is developed. T
element removal and reactivation method is applied to e
melted element to account for the stress and strain release i
melted material. A second initial temperature is necessary for
reactivated elements in order to compute the stress and strai
velopment correctly. The bending angle and the residual stress
strain distribution of stainless steel irradiate by a laser pulse
obtained using this model. Results are also compared with th
of laser bending without melting. No sudden change of the to
residual strain, stress, and the bending angle is found when
laser energy is increased across the melting threshold.
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Nomenclature

E 5 laser pulse energy
I 0 5 laser intensity at the center of the laser beam
I s 5 laser flux
L 5 latent heat

Q̇ab 5 volumetric heat source term induced by irradiation
a laser pulse

Rf 5 optical reflectivity
T 5 temperature

Tl 5 liquidus temperature
Ts 5 solidus temperature
c̃ 5 effective specific heat

cp 5 specific heat
k 5 thermal conductivity
t 5 time

w 5 laser beam width
x, y, z 5 Cartesian coordinates

a 5 absorption coefficient
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d 5 position of solid-liquid interface
«yy 5 total strain along they-direction
«yy

p 5 plastic strain along they-direction
«yy

th 5 thermal strain along they-direction
k 5 imaginary part of the refractive index
l 5 wavelength
r 5 density

syy 5 stress along they-direction
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A Mode III Crack in a Functionally
Graded Piezoelectric Material
Strip
This paper considers a mode III crack problem for a functionally graded piezoele
material strip. The mechanical and electrical properties of the strip are considered f
class of functional forms for which the equilibrium equation has an analytical solut
The problem is solved by means of singular integral equation technique. Both a s
crack and two collinear cracks are investigated. The results are tabulated and plott
show the effect of the material nonhomogeneity and crack location on the stres
electric displacement intensity factors.@DOI: 10.1115/1.1755692#
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1 Introduction
In designing with piezoelectric materials, it is important to ta

into consideration imperfections, such as cracks, that are o
pre-existing or are generated by external loads during the ser
life. The fracture of piezoelectric materials have received mu
attention. On the other hand, the development of function
graded materials~FGMs! has demonstrated that they have the p
tential to reduce the stress concentration and increase the fra
toughness. Consequently, the concept of FGMs can be extend
the piezoelectric materials to improve its reliability. The fractu
of functionally graded piezoelectric materials has been studied
the thermal loads,@1#, and the antiplane mechanical and in-pla
electric loads,@2#.

Recently, Li and Weng@2# studied a mode III fracture problem
for a functionally graded piezoelectric material~FGPM!. The
crack is located at the center of the strip. The material proper
vary in the direction perpendicular to the crack, and they are a
symmetric with respect to the cracked plane. Two important
sults were reported:~1! The crack tip singularity in a FGPM is o
the same type as in the homogeneous piezoelectric materials~2!
The stress and the electric displacement intensity factors decr
with the increasing material gradient. In this paper, we prese
more general solution to the mode III crack problem for a FGP
strip shown in Fig. 1. A class of functional forms for which th
equilibrium equations have analytical solutions is studied. T
influence of crack location~i.e., h1 /h) on the stress and electri
displacement intensity factors is considered. The effect of inte
tion of more than one crack on SIFs is investigated by conside
two collinear cracks in the strip. Different from the conclusio
made in@2#, we find that, for different material property distribu
tions, the magnitudes of the stress and electric displacemen
tensity factors can increase or decrease with material gradien

2 Formulation of the Crack Problem
Consider the crack geometry shown in Fig. 1. Assume that

medium is loaded away from the crack region. The problem in
absence of cracks has been solved, and the only applied ar
antiplane shear stresses and the in-plane electric displacemen
the crack surfaces.

Under antiplane deformation, the constitutive equations are

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 19, 2002; final revision, Oct. 13, 2003. Associate Editor: H. Gao. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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txz5c44~y!
]w

]x
1e15~y!

]f

]x
, (1a)

tyz5c44~y!
]w

]y
1e15~y!

]f

]y
, (1b)

Dx5e15~y!
]w

]x
2P11~y!

]f

]x
, (1c)

Dy5e15~y!
]w

]y
2P11~y!

]f

]y
, (1d)

where c44(y), e15(y), and P11(y) are the shear modulus, th
piezoelectric constant, and the dielectric constant, respectiv
The equilibrium equations are

]txz

]x
1

]tyz

]y
50,

]Dx

]x
1

]Dy

]y
50. (2)

In order to overcome the complexity of mathematics involved,
focus on a special class of FGPMs in which the variations of
properties are in the same proportion. Therefore, we assume

c44~y!5c0f ~y!, e15~y!5e0f ~y!, P11~y!5P0f ~y!. (3)

From Eqs.~1!–~3!, we obtain

c0S ]2w

]x2
1

]2w

]y2 D 1e0S ]2f

]x2
1

]2f

]y2 D 1c0p~y!
]w

]y
1e0p~y!

]f

]y

50, (4a)

e0S ]2w

]x2
1

]2w

]y2 D 2P0S ]2f

]x2
1

]2f

]y2 D 1e0p~y!
]w

]y
2P0p~y!

]f

]y

50, (4b)

where

p~y!5
1

f ~y!

df ~y!

dy
. (5)

Let the solution of~4! be given by

w~x,y!5
1

2p E
2`

`

F1~y,s!e2 isxds, (6a)

f~x,y!5
e0

P0
w~x,y!1

1

2p E
2`

`

F2~y,s!e2 isxds. (6b)

From Eqs.~4! and ~6! it follows that
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d2F1

dy2
1p~y!

dF1

dy
2s2F150,

d2F2

dy2
1p~y!

dF2

dy
2s2F250.

(7)

If we replace the unknown functionF1 by H1 and F2 by H2 so
that

F1~y,s!5H1~y,s!@ f ~y!#21/2, F2~y,s!5H2~y,s!@ f ~y!#21/2,
(8)

Eq. ~7! would then become

d2H1

dy2
2

1

4 S p212
dp

dy
14s2DH150,

d2H2

dy2
2

1

4 S p212
dp

dy
14s2DH250. (9)

We will now look for a particular class of functions for which~9!
have analytical solutions. The simplest such classes of funct
are obtained by assuming that

p212
dp

dy
54,0 , (10)

where,0 is a constant. Three classes of functions satisfying~10!
may thus be obtained as follows@3#:

~a! ,05b2:

p~y!572b, f ~y!5exp~72by!, (11)

p~y!52b coth~by1d!, f ~y!5sinh2~by1d!, (12)

p~y!52b tanh~by1d!, f ~y!5cosh2~by1d!, (13)

~b! ,052b2:

p~y!52b cot~by1d!, f ~y!5sin2~by1d!, (14)

p~y!522b tan~by1d!, f ~y!5cos2~by1d!, (15)

~c! ,050:

p~y!52b/~by11!, f ~y!5~by11!2, (16)

p~y!50, f ~y!51, (17)

where b and d are arbitrary constants. Using the substitutio
b→2b and d→p/22d, the property distribution~15! can be re-
duced to~14!. Further, Eq.~17! describes a homogeneous mater
strip.

3 The Solution
Under conditions~11!–~17!, the fundamental solution to Eqs

~9! can be obtained in analytical forms:

H15A~s!exp~ usugy!1B~s!exp~2usugy!,

H25C~s!exp~ usugy!1D~s!exp~2usugy!, (18)

where

g5A11,0 /s2. (19)

From Eqs.~18!, ~8!, and~6! it follows that

Fig. 1 Geometry of the crack problem
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w~x,y!5
1

2p E
2`

`

@ f a~y!A1~s!1 f b~y!B1~s!#e2 isxds, y,0,

(20a)

f~x,y!5
e0

P0
w~x,y!1

1

2p E
2`

`

@ f a~y!C1~s!

1 f b~y!D1~s!#e2 isxds, y,0, (20b)

and

w~x,y!5
1

2p E
2`

`

@ f a~y!A2~s!1 f b~y!B2~s!#e2 isxds, y.0,

(21a)

f~x,y!5
e0

P0
w~x,y!1

1

2p E
2`

`

@ f a~y!C2~s!

1 f b~y!D2~s!#e2 isxds, y.0, (21b)

where A1(s), B1(s), C1(s), D1(s), A2(s), B2(s), C2(s) and
D2(s) are unknown constants, and

f a~y!5@ f ~y!#21/2eusugy, f b~y!5@ f ~y!#21/2e2usugy. (22)

Now consider the boundary and continuity conditions~see Fig.
1!. Suppose that under antiplane deformation the upper and lo
surfaces of the crack are contacted without friction. Hence,
crack can be treated as an electrically permeable one and the
no stress on its surfaces. This assumption is same as that in@2#.
We shall treat the crack problem by means of the superposi
technique. That is we first solved the problem without any cra
and then use the equal and opposite values of the stress a
tractions on the crack surfaces. Then the continuity and bound
conditions are as follows:

tyz~x,2h1!50, Dy~x,2h1!50, xP~2`,`!, (23)

tyz~x,h2!50, Dy~x,h2!50, xP~2`,`!, (24)

tyz~x,10!5tyz~x,20!, Dy~x,10!5Dy~x,20!,

xP~2`,`!, (25)

f~x,10!5f~x,20!, xP~2`,`!, (26)

w~x,10!5w~x,20!, x¹~b,c!, (27a)

tyz~x,10!5tyz~x,20!5t0~x!, xP~b,c!. (27b)

The seven homogeneous boundary conditions shown in E
~23!–~26! may be used to eliminate seven of the eight unknow
A1(s), B1(s), C1(s), D1(s), A2(s), B2(s), C2(s), and D2(s).
The mixed boundary conditions~27! would then give a system o
dual integral equations to determine the remaining one funct
By defining a new unknown

g~x!5
]w~x,10!2]w~x,20!

]x
, (28)

the problem may also be reduced to a singular integral equatio
g. In this case it is seen that Eq.~27a! is equivalent to

g~x!50 for x¹~b,c!, and E
b

c

g~x!dx50, (29)

and ~27b! gives the desired integral equation.
By substituting now from Eqs.~20! and ~21! through the

Hook’s law into boundary conditions~23! and ~24!, continuity
conditions~25! and ~26!, and by using Eq.~28!, A1(s), B1(s),
C1(s), D1(s), A2(s), B2(s), C2(s), and D2(s) may be deter-
mined in terms of the Fourier transforms ofg. Noting thatg is
zero forx¹(b,c), the following expressions are found:
Transactions of the ASME



A1~s!5
f b8~2h1!@ f a8~0! f b8~h2!2 f b8~0! f a8~h2!#

@ f b8~0!2 f a8~0!#@ f b8~2h1! f a8~h2!2 f b8~h2! f a8~2h1!#

3
i@ f ~0!#1/2

s E
b

c

g~ t !eistdt, (30a)

A2~s!5
f b8~h2!@ f a8~0! f b8~2h1!2 f b8~0! f a8~2h1!#

@ f b8~0!2 f a8~0!#@ f b8~2h1! f a8~h2!2 f b8~h2! f a8~2h1!#

3
i@ f ~0!#1/2

s E
b

c

g~ t !eistdt, (30b)

B1~s!52
f a8~2h1!

f b8~2h1!
A1~s!, (30c)

B2~s!52
f a8~h2!

f b8~h2!
A2~s!, (30d)

and

C1~s!52
e0

P0
A1~s!, (31a)
e

c
s

Journal of Applied Mechanics
D1~s!52
e0

P0
B1~s!, (31b)

C2~s!52
e0

P0
A2~s!, (31c)

D2~s!52
e0

P0
B2~s!, (31d)

where

f a8~y!5] f a~y!/]y, f b8~y!5] f b~y!/]y. (32)

Substituting from Eqs.~1! and ~20! into the boundary condition
~27b!, we obtain

1

p E
b

c

g~ t !K~x,t !dt5t0~x!/c0 , (33)

where

K~x,t !5
i

2 E2`

`

k~s!eis~ t2x!ds, (34)
k~s!5@ f ~0!#3/2
@ f a8~0! f b8~2h1!2 f b8~0! f a8~2h1!#@ f a8~0! f b8~h2!2 f b8~0! f a8~h2!#

s@ f b8~0!2 f a8~0!#@ f b8~2h1! f a8~h2!2 f b8~h2! f a8~2h1!#
. (35)
l.
y a
the
are
solu-

al
an
for

s

Therefore, the integral kernelk can be obtained by inserting th
property distributions~11!–~17! into Eqs.~22! and then into Eq.
~35!. In particular, if the material properties are described by E
~17!, the explicit form for the kernelk can be obtained as follows

k~s!52
sinh~sh1!sinh~sh2!

sinh~sh!
. (36)

For other property distributions,k is a very complicated function
of s.

4 The Singular Integral Equation
In order to determine the singular behavior of~33!, the behavior

of the kernelk needs to be examined. For this, it is sufficient
determine and separate those leading terms in the asymptoti
pansion ofk as usu→` that would lead to unbounded integral
From the expression ofk given in ~35! it can be shown that in the
asymptotic expansions forusu→` the only terms that would give
unbounded integrals are

k~6`!52sgn~s!
f ~0!

2
. (37)

By adding and substituting the asymptotic value given by~37! to
and fromk in ~34!, and by evaluating the integrals involving th
leading term, we obtain

K~x,t !5
f ~0!

2

1

t2x
1

i

2 E2`

`

L~s!eis~ t2x!ds, (38)

where

L~s!5k~s!1sgn~s! f ~0!/2. (39)

Thus,~33! may be modified as follows:
q.
:

to
ex-
.

e

f ~0!

2

1

p E
b

c 1

t2x
g~ t !dt1

1

p E
b

c

K1~x,t !g~ t !dt5t0~x!/c0 ,

(40)

where

K1~x,t !5
i

2 E2`

`

L~s!eis~ t2x!ds52E
0

`

L~s!sin@s~ t2x!#ds,

(41)

is a known bounded function.

5 Crack Tip Field Intensity Factors
The singular integral Eq.~40! contains a Cauchy-type kerne

Consequently, the crack tip behavior can be characterized b
standard square-root singularity. This means that the forms of
singular stress and electric fields at the crack tips in a FGPM
same as those in a homogeneous piezoelectric material. The
tion of the singular integral Eq.~40! has the following form:

g~x!5
F~x!

A~x2b!~c2x!
, (42)

where F is a bounded function. After normalizing the interv
(b,c) Eq. ~40! may be solved numerically by using a Gaussi
quadrature formula. The mode III stress intensity factor at,
example, the crack tipx5b is defined by

k3~b!5 lim
x→b20

A2~b2x!tyz~x,0!. (43)

Observing that Eq.~40! gives the stress componenttyz(x,0) on
the plane of the crack forxP(b,c) as well asx¹(b,c), substi-
tuting from Eq.~42! into Eq. ~40! a simple asymptotic analysi
would show that
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tyz~x,0!5
c44~0!

2 F F~b!

A~c2b!~b2x!
2

F~c!

A~c2b!~x2c!

1O~A~b2x!~x2c!!G . (44)

Thus, from Eqs.~43! and ~44! we obtain the stress intensity fac
tors

k3~b!5
c44~0!

2

F~b!

Aa
, k3~c!52

c44~0!

2

F~c!

Aa
, (45)

where a is the half-crack length~i.e., a5(c2b)/2). Since the
crack is assumed to be electrically permeable. There is no ele
potential discontinuity across the crack and the electric fieldEy is
finite at the crack tips. It can be shown from Eqs.~1! that the
electric displacementDy(x,0) near the crack tip has the followin
form:

Dy~x,0!5@e15~0!/c44~0!#t~x,0!, x→b20 or x→c10.
(46)

Therefore, the electric displacement shows singularity at the c
tips. The electric displacement intensity factork4 at, for example,
the crack tipx5b defined by

k4~b!5 lim
x→b20

A2~b2x!Dy~x,0!, (47)

can be obtained from

k45@e15~0!/c44~0!#k3 . (48)

Sincek3 depends only ont0(x) ~see Eqs.~40!, ~42!, and~45!!, the
applied electric load would contribute nothing to the crack
fields. Further, we note that the piezoelectric coefficiente15 and
the dielectric coefficientP11 do not enter Eq.~40!. This means
that the piezoelectric effect has no effect on the stress inten
factor.

6 Collinear Cracks
In formulating the problem, no conditions of symmetry wi

respect tox50 were assumed regarding to the crack geome
and the external loadt0(x). Thus, the integral Eq.~40! derived in
Section 4 is valid basically for any number of collinear crac
defined byy50, bj,x,cj , ( j 51, . . . ,n) along thex-axis with
the additional single-valuedness condition of the form~29! for
each crack, namely

E
bj

cj

gj~x!dx50, ~ j 51, . . . ,n!. (49)

The only change in the integral equation would be in replacing
integral (b,c) by the sum of the integralsLi5(bi ,ci) ( i
51, . . . ,n) corresponding to the collinear cracks.

As an example, we consider the case of two symmetric
located and symmetrically loaded collinear cracks~Fig. 2!. That
is, we assume thatb15b, c15c, b252c, c252b, tyz(x,0)
5tyz(2x,0)5t0(x), b,x,c. In this case, using the symmetr
conditions, Eq.~40! may be expressed as

Fig. 2 Two symmetrically located collinear cracks
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f ~0!

2

1

p E
b

cF 1

t2x
1

1

t1xGg~ t !dt1
1

p E
b

c

K2~x,t !g~ t !dt

5t0~x!/c0 , (50)

where

K2~x,t !5K1~x,t !2K1~x,2t !. (51)

The integral Eq.~50! is again solved under the following single
valuedness condition:

E
b

c

g~x!dx50. (52)

To solve Eq.~50!, the length parameters in it are normalize
according to

x5 x̄~c2b!/21~c1b!/2, t5 t̄~c2b!/21~c1b!/2. (53)

Thus, the integral Eq.~50! can be reduced to the following stan
dard form:

f ~0!

2

1

p E
21

1 F 1

t̄2 x̄
1

1

t̄1x1
Gg~ t !dt̄1

c2b

2

1

p E
21

1

K2~x,t !g~ t !dt̄

5t0~x!/c0 , (54)

where

x15 x̄1
2~c1b!

c2b
. (55)

The solution of~54! has the same form as Eq.~42!. It can also be
expressed as

g~ t !5
F~ t !

A12 t̄2
A 2

c2b
5(

n51

`
AnTn~ t̄ !

A12 t̄2
, (56)

whereTn is the Chebyshev polynomial of the first kind. By su
stituting from Eq.~56! into Eq.~54! and by using the well-known
orthogonality condition@4#:

1

p E
21

1 Tn~ t̄ !

~ t̄2 x̄!A12 t̄2
dt̄

55
Un21~ x̄!, n>1, ux̄u,1

2
sgn~ x̄!

Ax̄221
@ x̄2sgn~ x̄!Ax̄221#n, n>0, ux̄u.1

0, n50, ux̄u,1

, (57)

we find

f ~0!

2 (
n51

`

AnUn21~ r̄ !1
f ~0!

2 (
n51

`

An

1

Ax1
221

@Ax1
2212x1#n

1
c2b

2

1

p (
n51

`

AnE
21

1

K2~x,t !
Tn~ t̄ !

A12 t̄2
dt̄5t0~x!/c0 ,

(58)

whereUn21 is the Chebyshev polynomial of the second kind. T
simplest method for solving the functional Eq.~58! is truncating
the series and using an appropriate collocation inx ~see, for ex-
ample,@5#!. In this problem, the stress intensity factors can also
obtained from Eq.~45!.

7 Results and Discussions
Since the applied electrical load does not influence the crack

singularities, it is sufficient to consider a uniform shear loadi
t0 . Five kinds of property distributions, namely,f (y)
5exp(2by), f (y)5sinh2(by10.8814), f (y)5cosh2(by), f (y)
Transactions of the ASME
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5sin2(by1p/2), and f (y)5(by11)2 are investigated. The
shapes of these property distributions are displayed in Fig. 3
bh51.5. These functions show a same value 1 at the crac
plane~i.e., y50 plane!.

The normalized values of the stress intensity factors for a sin
crack are given in Figs. 4–8 and Tables 1–6. The electric
placement intensity factors can be obtained directly from Eq.~48!.
Figures 4–8 show the effect of the crack locationh1 /h on k3 in a
uniformly loaded FGPM strip. In these figuresa5(c2b)/2 is the
half-crack length. For comparison, the values ofk3 for a homo-
geneous medium~b50! are also displayed in each figure. As e
pected, forh1 /h→0, k3 become unbounded. A somewhat une
pected result is that in some cases, if the material nonhomoge
parameterb is relatively large, ash1 /h decreasesk3 does not

Fig. 3 Material properties distributions; bhÄ1.5, curve 1: f
Äsinh 2

„by¿0.8814…, curve 2: fÄexp „2by…, curve 3: fÄ„by
¿1…2, curve 4: fÄcosh 2

„by…, curve 5: fÄsin 2
„by¿pÕ2…

Fig. 4 The effect of the crack location on the stress intensity
factors; aÄ0.75h , fÄexp „2by…

Fig. 5 The effect of the crack location on the stress intensity
factors; aÄ0.75h , fÄsinh 2

„by¿0.8814…
Journal of Applied Mechanics
for
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-
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eity

monotonously increase, it rather goes through a minimum be
becoming unbounded~Figs. 5 and 8!. From the results shown in
Figs. 4–8, it is noted that the stress intensity factors can incre
~Figs. 4, 5, 7, and 8! or decrease~Fig. 6! with increasing param-
eterb. The influence ofb on k3 becomes more significant whe
the crack approaches the center (h15h/2) of the strip.

Some examples for the stress intensity factors are show
Tables 1–6 for different crack lengths. In these tables, agaia
5(c2b)/2 is the half-crack length. The crack is located sym
metrically; that is,h15h2 . As expected, in all cases as crac
length approaches zero we havek3→t0Aa. For reference, Table 1
also shows the results for the corresponding homogeneous
~i.e., for b50!.

Tabulated in Table 3 are stress intensity factors againsta/h for
the property distributionf (y)5cosh2(by). From the results, it is

Fig. 6 The effect of the crack location on the stress intensity
factors; aÄ0.75h , mÄm0 cosh 2

„by…

Fig. 7 The effect of the crack location on the stress intensity
factors; aÄ0.75h , fÄsin 2

„by¿pÕ2… or fÄcos 2
„by…

Fig. 8 The effect of the crack location on the stress intensity
factors; aÄ0.75h , fÄ„by¿1…2
MAY 2004, Vol. 71 Õ 331
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clear that asb increasesk3 decreases. The results clearly indica
that for a material with property distributionf (y)5cosh2(by) the
stress intensity factork3 is smaller than the corresponding valu
for a homogeneous piezoelectric layer~i.e., for b50!. The same
trend can be found in Fig. 6.

Table 6 shows the stress intensity factors forf (y)5(by

Table 1 Stress intensity factors for property distribution f
Äexp „2by …; h 1Äh 2Ä0.5h

a/h

k3 /t0Aa

bh50 bh560.5 bh561 bh561.25 bh561.5 bh561.75

1.0 1.377 1.388 1.413 1.438 1.463 1.491
0.9 1.333 1.342 1.370 1.390 1.413 1.439
0.8 1.288 1.296 1.322 1.340 1.361 1.385
0.7 1.242 1.250 1.273 1.289 1.309 1.331
0.6 1.195 1.202 1.223 1.238 1.255 1.275
0.5 1.149 1.155 1.173 1.186 1.201 1.218
0.4 1.105 1.110 1.125 1.135 1.148 1.162
0.3 1.064 1.068 1.079 1.087 1.097 1.108
0.2 1.031 1.033 1.040 1.046 1.052 1.059
0.1 1.008 1.009 1.012 1.014 1.017 1.019

Table 2 Stress intensity factors for property distribution f
Äsinh 2

„by¿d0…; h 1Äh 2Ä0.5h , d0 is such that sinh d0Ä1

a/h

k3 /t0Aa

bh560.5 bh561 bh561.25 bh561.5 bh561.75

1.0 1.408 1.496 1.559 1.631 1.709
0.9 1.361 1.444 1.504 1.572 1.645
0.8 1.314 1.390 1.444 1.507 1.573
0.7 1.265 1.334 1.384 1.440 1.501
0.6 1.217 1.279 1.323 1.374 1.429
0.5 1.168 1.2 1.260 1.304 1.352
0.4 1.120 1.164 1.195 1.231 1.271
0.3 1.076 1.109 1.133 1.160 1.190
0.2 1.038 1.059 1.075 1.093 1.112
0.1 1.011 1.020 1.026 1.033 1.041

Table 3 Stress intensity factors for property distribution f
Äcosh 2

„by …; h 1Äh 2Ä0.5h

a/h

k3 /t0Aa

bh560.5 bh561 bh561.25 bh561.5 bh561.75 bh562

1.0 1.367 1.337 1.314 1.288 1.257 1.221
0.9 1.323 1.295 1.274 1.249 1.220 1.187
0.8 1.279 1.253 1.234 1.210 1.184 1.154
0.7 1.234 1.210 1.192 1.171 1.146 1.119
0.6 1.188 1.167 1.151 1.132 1.110 1.085
0.5 1.143 1.125 1.111 1.095 1.076 1.054
0.4 1.100 1.085 1.074 1.060 1.044 1.026
0.3 1.061 1.049 1.040 1.030 1.018 1.004
0.2 1.028 1.021 1.015 1.009 1.001 0.991
0.1 1.008 1.004 1.002 0.999 0.996 0.992

Table 4 Stress intensity factor for property distribution f
Äcosh 2

„by¿1…; h 1Äh 2Ä0.5h

a/h

k3 /t0Aa

bh560.5 bh561 bh561.25 bh561.5 bh561.75 bh562

1.0 1.379 1.383 1.386 1.389 1.392 1.393
0.9 1.334 1.338 1.341 1.344 1.346 1.348
0.8 1.289 1.293 1.295 1.298 1.300 1.302
0.7 1.243 1.246 1.248 1.251 1.253 1.254
0.6 1.196 1.199 1.201 1.204 1.205 1.207
0.5 1.150 1.153 1.155 1.156 1.158 1.160
0.4 1.106 1.108 1.111 1.111 1.112 1.114
0.3 1.065 1.067 1.069 1.069 1.070 1.071
0.2 1.031 1.032 1.034 1.034 1.035 1.035
0.1 1.008 1.009 1.009 1.009 1.010 1.010
332 Õ Vol. 71, MAY 2004
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11)2. Since the material property must be positive defined,by
11 should not equal zero in the entire region ofy. This means
that for h15h250.5h, bh can approach but can not equal62.

A sample result for two collinear cracks in a FGPM layer
shown in Fig. 9 which also show the stress intensity factors in
corresponding homogeneous layer~i.e., forb50!. Again, the elec-
tric displacement intensity factors can be obtained from Eq.~48!.
In this example the layer thickness is used as the normal
length parameter. The half-crack length is fixed asa50.5h. b/h
50 and b/h→} correspond to two limiting cases of a sing
crack of length 2(c2b) andc2b, respectively. The figure show
that for b→0 as expectedk3(b) becomes unbounded, wherea
k3(c) tends to the values corresponding to a single crack of len
2c.

8 Conclusions
The fracture problem for a functionally graded piezoelect

material strip under antiplane shear is investigated for a clas

Fig. 9 Stress intensity factors for two collinear cracks in a
FGPM strip; aÄ„cÀb …Õ2Ä0.5h , h 1Äh 2 , fÄexp „2by…

Table 5 Stress intensity factors for property distribution f
Äsin 2

„by¿pÕ2… or fÄcos 2
„by …; h 1Äh 2Ä0.5h

a/h

k3 /t0Aa

bh560.5 bh561 bh561.25 bh561.5 bh561.75 bh562

1.0 1.388 1.419 1.443 1.472 1.506 1.547
0.9 1.342 1.372 1.394 1.421 1.453 1.490
0.8 1.296 1.323 1.343 1.368 1.398 1.432
0.7 1.250 1.274 1.293 1.315 1.342 1.374
0.6 1.202 1.224 1.241 1.261 1.285 1.313
0.5 1.156 1.174 1.188 1.206 1.227 1.250
0.4 1.110 1.125 1.137 1.151 1.168 1.188
0.3 1.068 1.080 1.089 1.100 1.112 1.127
0.2 1.033 1.041 1.046 1.053 1.061 1.071
0.1 1.009 1.012 1.014 1.017 1.020 1.024

Table 6 Stress intensity factors for property distribution f
Ä„by¿1…2; h 1Äh 2Ä0.5h

a/h

k3 /t0Aa

bh560.5 bh561 bh561.25 bh561.5 bh561.75 bh→62

1.0 1.398 1.459 1.504 1.558 1.619 1.683
0.9 1.352 1.409 1.451 1.501 1.558 1.618
0.8 1.305 1.357 1.396 1.442 1.494 1.549
0.7 1.258 1.306 1.341 1.383 1.431 1.481
0.6 1.210 1.252 1.284 1.322 1.364 1.410
0.5 1.162 1.198 1.226 1.258 1.294 1.334
0.4 1.115 1.145 1.168 1.194 1.224 1.257
0.3 1.072 1.095 1.112 1.132 1.155 1.180
0.2 1.036 1.050 1.061 1.074 1.089 1.105
0.1 1.010 1.016 1.020 1.025 1.031 1.038
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property distributions. Both a single crack and two colline
cracks are considered. The singular stress and electric fields a
crack tips in a functionally graded piezoelectric material have
same forms as those in a homogeneous piezoelectric material
found that the stress and electric displacement intensity factor
not depend on the applied electrical loads. The piezoelectric e
has no effect on the stress intensity factors. It is clear that
material nonhomogeneity has quite considerable influence
crack tip stress and electric displacement intensity factors: it
increase or decrease the magnitudes of the stresses and the e
displacements at the crack tips.

It should be pointed out that the results given in this paper
valid only for the special assumption where the variations of
material properties are in the same proportion. For more gen

case without such assumption, further research is required.
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Numerical Stability Criteria for
Localized Post-buckling Solutions
in a Strut-on-Foundation Model
Some stability results are established for localized buckling solutions of a stru
foundation model which has an initially unstable post-buckling path followed by a re
bilizing property. These results are in stark contrast with those for models with n
restabilizing behavior for which all solutions are unstable under dead-loading conditi
By approximating solutions with a nonperiodic set of functions, the stability of these s
solutions can be assessed by examining the nature of the equilibrium using total pot
energy considerations.@DOI: 10.1115/1.1757486#
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1 Introduction
Elastic stability theory is a well-worked subject in structur

mechanics and has proved to be successful in describing com
cated nonlinear phenomena through the application of approp
mathematical techniques. There has naturally been a trend of
lyzing questions of increasing sophistication as more and m
analytical and computational tools have been brought to bea
the problems. Very often progress has been made by modeling
structures or structural elements with simplified representat
made up of a few elements and assuming that loading is con
vative. This is particularly true in the study of localized bucklin
@1#, and, recently, some of the methods developed have been
plied directly to more realistic systems in terms of complica
~nonlinear! geometries or material properties,@2,3#. The pioneer-
ing work of Koiter @4# and, later, Thompson and Hunt@5# paved
the way by identifying total potential energy of an elastic syst
as being fundamental to the study of equilibrium solutions a
their stability. The latter work forwarded two axioms regardi
the equilibrium of structural systems described by a finite se
generalized coordinates. The first of these states that an extre
with respect to all the generalized coordinates of the total poten
energy represents an equilibrium solution whose stability is g
erned by the second axiom: this says that an equilibrium is st
only if given by a local minimum of the energy. These two axiom
encapsulate the analysis of post-buckling of engineering struct
as long as they remain within their elastic regimes and the load
is conservative, i.e., it maintains its magnitude and direction d
ing any deformation.

In recent times attention has turned to the various forms
buckling which better reflect the forms attained by real structu
For example, periodic buckling is found in structures with sta
post-buckling behavior such as plates under in-plane compres
and is characterized by significant deformation throughout
structure. Localized buckling, on the other hand, can occu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 25, 2002; final revision, September 22, 2003. Associate Editor: R. C. Ben
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McM
ing, Journal of Applied Mechanics, Department of Mechanical and Environme
Engineering, University of California–Santa Barbara, Santa Barbara, CA 93
5070, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
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shell-type structures where unstable post-buckling occurs. In
calized buckling, although large deformations are limited to
small region, the location of the region is often uncertain and
potentially be at numerous points within the system. As shells
prominent structural elements, the study of their buckling beh
ior is of importance to engineers. Although localized po
buckling solutions have been identified, relatively little has be
deduced concerning the stability of the solutions themselves a
is this we aim to examine here. There have been analyses
ducted close to the critical buckling load and others which ha
examined the general problem but for a limited—one might arg
not very realistic—range of nonlinearities~e.g., where only a de-
stabilizing effect is present!. Our intention is to relax some o
these restrictions and the essence of our stability analysis is b
on the classical notions of potential energy and the axioms ab

The total potential energy,V, of a structural system comprise
two components viz. the strain energy stored in the structure
to deformations,U, and the work done by the loadingP in moving
a distanceE. This is written as

V5U2PE (1)

and if the energy can be written down in terms of a set on
generalized coordinates,Qi , then equilibrium occurs when

]V

]Qi
50, for i 51,2, . . . ,n. (2)

The most convenient form of the generalized coordinates depe
on the context of the structure under consideration. If the po
buckling deflection is expected to be sinusoidal then it seems
sible to decompose deformations in terms of Fourier compone
On the other hand, if a structure is long in the sense that
natural length scale of buckling phenomena is small relative to
entire length then some other form may be useful as we shall
below.

-
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2 Problem Formulation
We examine the stability of a continuous one-dimensio

structure which is both long and admits localized solutions,@6#.
Previous work on the stability of post-buckling solutions in th
problem has concentrated mostly on analysis close to the bifu
tion point but the stability of a post-buckling solution can va
significantly when higher-order nonlinearities modify the effe
due to the one dominant at criticality. For the finite length vers
of our present example Lange and Newell@7# used a double-scale
approach to demonstrate that close to criticality the solutions
furcating from the fundamental state are unstable~see also Fu@8#
and Calvo et al.@9# for extension to localized solutions in th
infinite-length case!. More general results were obtained by San
stede@10# who examined this model but with only a destabilizin
quadratic nonlinearity (c250 in ~3! below!. He showed that such
primary solutions are stable for a certain load range for rigid lo
ing only—all solutions are unstable under dead loading. The t
primary solution, the form which bifurcates from the critic
point, is taken to mean a localized profile whose amplitude dec
monotonically from the center of localization and is usually rem
niscent of a hyperbolic secant function. With the addition o
restabilizing cubic nonlinearity, however, the situation becom
yet more involved and it is this that we wish to tackle, at leas
part, here. This type of solution is known to bifurcate from the fl
profile at the buckling load of the strut and, in fact, there are t
such solutions which emerge at critical loading. In passing,
note that other forms of localization are possible which are es
tially copies of the primary profile glued together,@11#. However,
these forms do not emerge from the critical state and are str
subcritical phenomena. We will focus our interest on primary
lutions in the remainder of this study.

The structure to be studied is a long axially compressed s
resting on a nonlinear elastic~Winkler! foundation~see Fig. 1!.
Let x denote the axial coordinate andy the vertical deflection. The
linear bending stiffness of the strut is taken to beEI and it is
assumed that the strut rests on a nonlinear elastic founda
which provides a resistive vertical forceF per unit length~see
@5#!. The structure is loaded by a parametric conservative c
pressive axial forceP.

2.1 The Nonlinearities. When it comes to the choice o
nonlinearities in our model we have several options. Firstly, if
wish to examine large deflections, then elastica nonlineari
ought to be included,@3,12#, but it is then easy to lose sight of th
important aspects of the analysis as they can be obscured by
plicated algebra. On the other hand, without due care, impor
terms may be omitted leading to an over-simplified model.
therefore choose a model which is sophisticated enough to a
realistic behavior but also one where the analysis is not obfusc
by extraneous nonlinear terms which do not add to the phys
relevance of the model to the order of approximation intende

To ensure that the structural system undergoes a subcritica

Fig. 1 An elastic strut resting on an elastic foundation acted
on by a compressive axial load
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al

is
rca-
ry
ts
on

bi-

d-
g

d-
rm
l
ays
i-
a
es
in
at
o

we
en-

ctly
o-

trut

tion

m-

f
e

ies

om-
ant
e
mit
ted

ical
.
l bi-

furcation, the nonlinearity which dominates in this region mu
have a negative coefficient. This choice means that the bifurca
point is unstable and localized buckling is then favored over
periodic counterpart as it requires less energy to be triggered,@1#.
Higher-order positive terms are then required to cause the sys
to restabilize. In order to model these various features we cho
to capture the restabilization phenomenon at the lowest poss
orders so that in addition to the linear term in the foundation fo
a negative quadratic term and a positive cubic term are includ
Thus we take

F5ky2c1y21c2y3 (3)

where the foundation constantsk, c1 , andc2 are all positive. This
choice of nonlinearity is reminiscent of the analogy used by v
Kármán who proposed a similar model to describe the po
buckling response of circular cylindrical shells under axial load
~see Fig. 2!. The radial displacement of the shell is asymmet
~i.e., there is more resistance to inward deflection than to outw
deflection! and also exhibits the destabilizing-restabilizing beha
ior given by ~3!. Although the above choice may seem to be
crude model of the full shell problem, it does have the merit
exhibiting many of the essential features required while mainta
ing some simplicity. The strain energy of the system is the sum
bending energy,UB , and energy stored in the foundation,UF ,
where

UB5
1

2
EIE

2`

`

y92dx,

(4)

UF5E
2`

` S 1

2
ky22

1

3
c1y31

1

4
c2y4Ddx

and a prime denotes differentiation with respect tox. End short-
ening,E, is taken to be the standard form for a strut with only t
leading-order term contributing, i.e.,

E5
1

2 E2`

`

y82dx (5)

and, inserting all these quantities into the basic form for to
potential energy~1!, gives

V5E
2`

` S 1

2
EIy922

1

2
Py821

1

2
ky22

1

3
c1y31

1

4
c2y4Ddx.

(6)

Fig. 2 The von Ka´rmán analogy between the post-buckling re-
sponse of a cylindrical shell element „panel … and the up-
down-up response of a strut-on-foundation model. If the panel
is thin, the rings have very little bending stiffness and act as
thin arches for normal compressive loads „see the top right
diagram …. The load-deflection curve for such a structure has
the well-known shape shown in the bottom graph.
MAY 2004, Vol. 71 Õ 335
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The governing differential equation is obtained by a straightf
ward application of the calculus of variations and the system
be readily nondimensionalized by the scalings

x→xA4 k

EI
, P→ P

AkEI
, y→ y

uc1u
, (7)

to give the key ordinary differential equation for the model,

y991Py91y2y21c2y350. (8)

Then the only remaining parameters are the axial load,P, and the
restabilizing cubic coefficientc2 .

3 Asymptotic Results for Stability
In this section we sketch results for the problem based o

double-scales asymptotic approach,@13#. It will be seen in due
course that the theory predicts only unstable solutions and is
capable of capturing the behavior of the system far from the p
of bifurcation. This deficiency will be subsequently rectified an
method developed which can track solutions much further into
post-buckling regime. Moreover, our strategy is capable of
scribing accurately both the buckled shapes and stability cha
teristics of the structure under the more general dead loa
conditions.

3.1 Linear Eigenvalue Analysis and Basic Perturbation
Results. To isolate the value of the parametric loadingP at
which the flat fundamental~unbuckled! state loses stability it suf-
fices to examine the linearized form of~8! so that the quadratic
and cubic terms are omitted. Then, for positiveP, three regions
with distinct behaviors can be identified. WhenP.PC52, the
four eigenvalues of the truncated problem are purely imagin
and are symmetrically spaced about the real axis. The deflectio
this case is thus expected to be periodic inx. As P is reduced, the
pairs either side of the real axis coalesce whenP5PC and the
system undergoes a Hamiltonian-Hopf bifurcation,@1#. Finally,
onceP,PC, the two pairs split symmetrically into the four quad
rants of the complex plane with the forms6a6iv where

a5A1

2
2

P

4
, v5A1

2
1

P

4
. (9)

These parts of the eigenvalues of the linearized problem
important in motivating the perturbation expansion below and
particular, it is observed that the real part,a, is small whenP is
close toPC.

In the vicinity of PC a double-scale perturbation analysis r
veals the behavior of the emergent primary solutions. To this
we define a small perturbation parameter,«, which measures evo
lution from the critical state such that

«2[PC2P522P (10)

whereupon the real and imaginary parts of the linear eigenva
~9! become

a5
«

2
, v512

«2

8
1O~«4!. (11)

The amplitude of the solutions varies on a slower scale than
period of the deflection atP5PC and so we define a slow spac
scale such thatX5«x. By expressingy as

y5(
i 50

`

$Ai~X!cosi ~vx1f0!1Bi~X!sin i ~vx1f0!%, (12)

whereAi andBi are slowly varying amplitudes andf0 is a phase
angle, the governing Eq.~8! is transformed into a partial differen
tial equation,@6#. If each amplitude is also expressed as a pow
series in«
336 Õ Vol. 71, MAY 2004
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Ai~X!5(
j 51

`

« jAi
~ j !~X!, Bi~X!5(

j 51

`

« jBi
~ j !~X! (13)

and progressively higher-order coefficients of« extracted, we de-
rive a set of equations which reveal the behavior of the amplitu
in the formal expansions of eachAi and Bi . The first equation
arising from the double-scale approach which gives non-triv
information concerns the amplitude of the fundamental mode
the first-orderA1

(1) and is

4
d2A1

~1!

dX2
2A1

~1!1S 19

18
2

3

4
c2DA1

~1!350. (14)

For bounded localized solutions the coefficient of the cubic te
must be positive which yields the conditionc2,38/27,@14#. For
larger c2 the asymptotic theory predicts that localized solutio
cannot exist and this result ties in with the study of Woods a
Champneys@15# who used a normal forms type of analysis for th
restabilizing strut problem. Apart from this condition onc2 , Eq.
~14! is only expected to be valid very close to the critical point
P5PC and gives no clue as to how the system may evolve w
« is not small.

The system we are studying isreversible which means that
there is an involution which stems from invariance of solutions
the transformationy(x)→y(2x). Also, any solution can be freely
translated along thex-axis and so we can seek solutions on t
semi-infinite domain 0<X,` with the imposition of the so-
called symmetric section conditiony8(0)5y-(0)50. The slow-
space analysis completely decouples the fast variation from
slow one,@13#, and, in particular, suggests that the phasef0 in
~12! is arbitrary. However, a more advanced analysis based u
the ideas of exponential asymptotics reveals that for primary
calization f0 is not free but rather is restricted to the discre
valuesf050 or p, @16,17#. This reinforces the importance of th
symmetric section which means that all primary solutions to t
system must be even functions about their own centers,@6#, and

A1
~1!56S 192

27

2
c2D 21/2

sech
X

2
52A2

3
d21/2 sech

X

2
(15)

where, for later convenience, we adopt the definitiond[38/27
2c2 .

The asymptotic form in ascending powers of« to the formal
double-scale approximation of the static system is,@17#,

y5«a1 sech
X

2
cos~vx1f0!1«2S a2 sech

X

2
tanh

X

2
sin~vx1f0!

1
1

2
a1

2S 11
1

9
cos 2~vx1f0! D sech2

X

2 D
1«3S a3 sech

X

2
cos~vx1f0!1a4 sech3

X

2
cos~vx1f0!

1
1

27
a1~4a113a2!sech2

X

2
tanh

X

2
sin 2~vx1f0!

1
~27d232!

6912
a1

3 sech3
X

2
cos 3~vx1f0! D1O~«4!, (16)

where the constantsa12a4 are given by

a152A2

3
d21/2,

a25d21/2SA3

2
1

16

81
A2

3
d21D ,

a35d21/2S 2
317

72
A1

6
2

1252

81
A2

3
d211

10432

729
A2

3
d22D ,
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a45d21/2S 2
307

72
A1

6
2

2296

243
A2

3
d212

46912

6561
A2

3
d22D .

It is fortunate that the solutions of higher-order equations aris
in the perturbation expansion can also be found explicitly.

3.2 Analysis of Dynamical Stability. In order to assess
asymptotic stability, particularly under dead loading conditions
is necessary to add an acceleration term to the governing equ
of the static model. We proceed as outlined in Calvo et al.@9#
whereupon

mÿ1EIy991Py91ky2c1y21c2y350 (17)

wherem is the mass per unit length of the strut, a dot deno
partial differentiation with respect to time, and a prime is now
partial spatial derivative. A nondimensional version of this eq
tion can be written as

ÿ1y991Py91y2y21c2y350. (18)

To carry out a double-scale analysis on this equation, it is ne
sary to define a slow space scaleX5«x as before and we also
need to introduce a slow time scale such thatT5«t. The ampli-
tudes of the Fourier modes in~12! and~13! are generalized to be
functions of bothX and T so that Ai

( j )5Ai
( j )(X,T) and Bi

( j )

5Bi
( j )(X,T). Following the procedure described earlier, it

found that the lowest-order equation which governs the am
tudes is now

]2A1
~1!

]T2
54

]2A1
~1!

]X2
2A1

~1!1
3

4
dA1

~1!3 (19)

which encapsulates the static version of the equation when
derivatives are absent and so has the solution given in~15!. In
addition if a small dynamic disturbance is present such that

A1
~1!~X,T!5A~X!1a~X!elT, (20)

whereA(X) is the function defined in~15! then substituting~20!
in ~19! and linearizing ina(X) gives

4
d2a

dX2
1S 6 sech2

X

2
212l2Da50. (21)

The above equation has an unstable eigenfunctiona5sech2 X/2,
which is still localized in space, with eigenvaluel5). Thus the
original solution will grow in time with exponential rate
exp(A3«t). It is important to note that the above analysis reve
that the instability is independent of the restabilization presen
the structure~with the caveat thatc2,38/27).

This double-scale approach is unable to account for high
order effects as it is restricted to the vicinity ofP5PC so that« is
small. It would be desirable to find some method which, althou
based on a simple mode-based approach, did have the added
ity to describe phenomena further into the subcritical region.

4 Analysis Far From the Bifurcation Point
In order to analyze the behavior of the structural system ‘‘fa

from the bifurcation point, an alternative strategy needs to
adopted. We necessarily need to turn to a numerical metho
suitable candidate which is capable of both determining appr
mate equilibrium solutions and their stability is a modifie
Rayleigh-Ritz procedure which can be motivated by the form
the solution garnered from the slow-space expansion. Con
tional Rayleigh-Ritz analysis is suitable for periodic analy
which stems from the assumption that amplitudes of the cons
ent modes are constant inX. That Rayleigh-Ritz ideas can b
adapted to the study oflocalizedpost-buckling phenomena wa
first demonstrated by Wadee et al.@13# for the case of quadratic
nonlinearity (c250). They showed that the procedure is able
track primary solutions from very close toPC right down to zero
Journal of Applied Mechanics
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load. Furthermore, for the casec2.0, it is possible to follow
accurately solutions into and beyond the first restabilizing regi
@14#.

The double-scale solutions, though not very accurate when
amining the behavior of the structure other than very close
criticality, do nevertheless have some desirable properties.
example, they decay exponentially in both directions about
assumed center at a rate dictated by the real part of the li
eigenvalues,~6a in ~9!!. Any approximate localized solution
even away from the critical point, ought to incorporate such
havior. Thus we use a procedure involving two steps culminat
in a hybrid technique. Firstly, we take the form of the double-sc
solution but treat the amplitudes of each mode as unknown.
thermore, the accuracy of the solutions is enhanced by allow
the shape factorsa and v to be variables as well. Thus our as
sumption is that the primary solution has the form

y5A1 sechA7x cosA8x1A2 sech2 A7x1A3 sech2 A7x cos 2A8x

1A4 sechA7x tanhA7x sinA8x1A5 sech3 A7x cosA8x

1A6 sech3 A7x tanhA7x sinA8x (22)

for some constantsA12A8 . The first five terms in~22! are im-
mediately motivated by the double-scale solution~16!. Most
higher-order harmonic functions are not included in~22! as the
amplitudes of such terms tend to remain small for a range of
post-buckling regime. One way of viewing this technique is
recognize that in many perturbation expansions the functio
form of the higher-order terms can be well approximated by
combination of the lower-order terms. Thus, much of the effec
higher-order terms can be achieved by applying our hyb
Rayleigh-Ritz approach to a relatively small number of lowe
order functions. However, one extra term~with coefficientA6) has
been included which would arise if the expansion in~16! were to
be taken to higher order,@14#. In numerical terms, this coefficien
is found to grow siginificantly far from criticality and so its inclu
sion seems appropriate.

Our experience has shown that~22! constitutes a reasonabl
compromise between the conflicting factors of accuracy and e
of computation. Application of a similar hybrid technique but u
ing a Galerkin procedure to describe nonperiodic solutions
been reported by Geer and Andersen@18#. They were able to put
the use of nonperiodic functions to span the solution space o
firm footing and it has been demonstrated that the Galerkin
Rayleigh-Ritz procedures give identical results in the present e
tic strut model,@19#.

By inserting~22! into the total potential energy functional~6!,
we deduce thatV5V(Ai), wherei 51,2, . . . ,8.Naturally, finding
an explicit form of the expression is a long-winded exercise so
turned to the software Mathematica@20#. The requisite integrals
were calculated using contour integration in the complex pla
around appropriate closed paths and exact expressions wer
tained, @13#. Equilibrium is determined by the solution o
]V/]Ai50 for i 51,2, . . . ,8; analternative view of this is the
specification that the various modes should be mutually ortho
nal. MATHEMATICA was used to evaluate these derivatives and
resulting set of nonlinear algebraic equations were then so
numerically using a multidimensional Newton-Raphson pro
dure,@21#. A requirement of the scheme, which turns out to be
bonus, is that second derivatives ofV are required and this allows
us easily to find out the nature of the equilibrium states~extrema
of V).

In accordance with the theory of elastic stability, a stable eq
librium path is determined by a local minimum of the ener
functional, @5#. With our modal description with the amplitude
now known, it is sufficient to show that the Hessian matrix ofV is
positive definite to ensure stability. Thus all eight eigenvalues
MAY 2004, Vol. 71 Õ 337
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this matrix must be greater than zero but, rather than show
these individually, we depict the determinant of the matrix wh
the criterion

D5detS F ]2V

]Ai]Aj
G D.0, for i , j 51,2, . . . ,8 (23)

is a necessarycondition for stability.
The second derivatives ofV with respect to the variable

A1 , . . . ,A8 are needed to find the numerical solutions to the eq
librium problem and thereby findD. As the positive definitenes
condition is another way of expressing the second axiom of ela
stability, it is sufficient to demonstrate the stability or otherwise
primary localized solutions at least to the level of approximat
assumed in the Rayleigh-Ritz procedure.

5 Numerical Comparisons

It has been noted earlier that two paths bifurcate atP5PC

which correspond to the two permitted values of phase an
f050 or p between the center of the slowly varying amplitu
and the sinusoidal oscillation,@17#. It turns out that both of these
paths can be followed from close to criticality by the Rayleig
Ritz procedure. Formerly, only the branch corresponding tof0
50 has been tracked,@13,14#, but in addition here we demon
strate that the other one can be followed with a similar degre
accuracy.

Our approximate solutions are compared directly against
merical solutions obtained using the boundary value so
AUTO97, @22#. It should be noted that whereas finding localiz
solutions to the strut model is straightforward using this progra
it is nonetheless incapable of addressing the issue of stab
Thus a key attraction of our hybrid approach is that not only c
it follow localized solutions but it can also furnish important i
formation regarding the stability of these solutions.

5.1 Quadratic Nonlinearity Only: c2Ä0. Before proceed-
ing to the case of a restabilizing foundation, we present the
bility calculation for the quadratic foundation caseF5y2y2

which is known to have unstable solutions under dead load
conditions,@10#. The procedure adopted to continue a numeri
solution in P was as follows. An initial solution was found nea
criticality, typically at P'1.9, using a shooting technique,@6#.
This was then fed intoAUTO97 as an initial solution which could
be tracked either towardsPC or zero. In practical terms, numerica
solutions very close the critical point do not converge very w
and so they are only shown up to aboutP51.96. The Rayleigh-
Ritz solver requires a good initial guess for convergence to
assured and then these solutions can be tracked inP. Around limit
points, however, continuation in one of the amplitudes is poss
as described in Wadee and Bassom@14# until the path on the othe
side of the fold is picked up.

As the solutions are supposedly unstable, we would expec
energy not to be a minimum throughout. Figure 3 shows thatD,0
for the range ofP shown although it approaches zero qu
quickly. Thus we seem to have successfully established a qu
tative criterion to judge the stability of primary localized sol
tions. Details of the post-buckling solutions referred to here
be found in Wadee et al.@13#.

5.2 Restabilizing Case: 0Ëc2Ë38Õ27. The Rayleigh-Ritz
analysis was carried out for three positive values ofc2 which give
rise to different behaviors of the foundation~see Fig. 4!. The first,
c250.24, represents a case where the foundation force,F, be-
comes negative for a range of positivey before bottoming out. In
the second case (c250.3), the foundation response is always r
sistive but there is a negative stiffness region for positivey and
finally, the last case (c250.4) is one for which the foundation
always resists deflection and its stiffness always remains posi

The bifurcation diagram for a restabilizing model withc2 is
more complex than for the quadratic-only counterpart. Two pa
338 Õ Vol. 71, MAY 2004
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still bifurcate fromPC but then both undergo an infinite number
oscillations between two limiting subcritical parameter valu
@15#. This phenomenon is calledsnakingand the initially localized
profiles eventually evolve into a periodic form.

The three restabilization values chosen give rise to qualitativ
different behaviors from a physical perspective and we assess
accuracy of our approximate scheme against all three. The re
are summarized in Figs. 5–7. The bifurcation diagrams sh
good agreement between numerics and the Rayleigh-Ritz pr
dure well into the first restabilization region as is confirmed by
selected eigensolutions on the branch corresponding to prim
localized solutions centered at a trough~or f05p) shown in Fig.
6 ~see Wadee and Bassom@14# for eigensolutions on the othe
branch,f050). For the smallest value ofc2 , the range between
the maxima and minima of the snaking curve shown in Fig. 5~a! is
large. Asc2 is increased, the range decreases and both extr
also get progressively closer toP5PC ~Fig. 5~b! and ~c!!. The
determinant of the Hessian ofV, D, for each branch in Fig. 5 is
shown in Fig. 7. The points identified asOp andOt on the curves
denote the positions on the branchesf050 andp, respectively,
whereD changes sign. These locations correspond precisely w
the position of the folds where the solutions evolve from be
unstable to stable.

In all three cases depicted the solutions are accurately trac
around the first limit point after which the solutions becom
stable. The change over from stability can readily be identified
Fig. 7 whereD can be seen to change sign when it is plott
against end shortening although there are seemingly flat region
the case ofc250.24 and 0.3. This backs up the observation
Maddocks@23# who has postulated that during evolution of sta
solutions under the variation of a parameter, their instability u
dergoes a transformation to stability~or vice versa! if the path
encounters a limit point. The swapping from instability to stabil

Fig. 3 Variation of D „Eq. „23…… with load P for the model with
only a quadratic destabilizing nonlinearity „c 2Ä0…. Sample val-
ues: D„1.0…ÄÀ9.6Ã10À7 and D„0.0…ÄÀ7.5Ã10À10.

Fig. 4 The variation of foundation force FÄyÀy 2¿c 2y 3

against lateral deflection y for various values of the coefficient
c 2
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Fig. 5 Initial bifurcation diagrams depicting the post-buckling behavior of primary localized
solutions of the restabilizing strut model with „a… c 2Ä0.24; „b… c 2Ä0.3, and „c… c 2Ä0.4. Numerical
„AUTO97… solutions for peak-centred „f0Ä0… and trough-centered „f0Äp… orbits are shown
against end-shortening, E, with solid and dashed lines, respectively. Discrete points show solu-
tions obtained using the nonperiodic Rayleigh-Ritz procedure.
s
a

a

lso
cted
e
w-
not
according to the classification of the extremum matches clo
that expected for both forms of localized solutions which bifurc
from the critical point.~Of course, if pairs of negative eigenvalue
existed this would also give a positive determinant but we h
found only positive eigenvalues in that region.!
lied Mechanics
ely
te
s
ve

Further into the post-buckling regime the stable region is a
accurately tracked in all the cases and the second fold is dete
as is evidenced byD rapidly approaching zero again indicating th
solution is once again becoming unstable. After this point, ho
ever, the accuracy of the solution diminishes rapidly and is
Fig. 6 Comparison of buckling solutions obtained using AUTO97 „solid line … and the Rayleigh-
Ritz method „discrete points … for the fold points A–F identified on the f0Äp branches in Fig. 5
MAY 2004, Vol. 71 Õ 339
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Fig. 7 Variation of the determinant of the Hessian of the energy function, D, with end-shortening
for various values of c 2 : „a… 0.24; „b… 0.3; „c… 0.4. The peak-centered branch is labeled Dp and the
trough-centered branch is labeled D t . The fold point on the corresponding bifurcation diagram
in Fig. 5 is identified with a large dot.
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shown here. The infinite snaking of the two branches eventu
leads to a periodic solution—each turning point corresponds to
growth of the amplitude of another pair of sinusoidal oscillatio
either side of the center of localization eventually to the size of
central deflection,@15#.

The nonperiodic Rayleigh-Ritz procedure is capable of det
ing the early localized behavior of the system. On the other ha
an accurate representation of the limiting post-buckling beha
can be obtained by a straightforward application of conventio
periodic Rayleigh-Ritz analysis. The key feature to note about
periodic solution evolving from the localized one is that they bo
have the same energy corresponding to the so-calledMaxwell cri-
terion in the sense described by Hunt et al.@24#. The mechanism
of the transformation is understood and now some quantita
results about stability have also been established which con
other studies,@25#.

6 Conclusions
In this work we have established a numerical method to as

the stability of primary~single-humped! localized solutions which
emerge from the critical state of a strut-on-foundation model. T
technique has successfully predicted the stability~or otherwise! of
such solutions both for a simple destabilizing nonlinearity and
the case in which the initially unstable path is restabilized
higher-order nonlinear effects. Whereas asymptotic analysis
to pick up any change in stability due to restabilization, t
method presented here has the attractive feature of not only
resenting the solutions accurately but is also able to track th
around folds as the loading parameter is varied and to giv
quantitative assessment of where their stability characteris
change. By using a solution of the form originating from a doub
scale analysis, we have been able to continue accurately p
buckling solutions under conditions of dead loading far beyo
the region in which the perturbation expansion is valid. Broa
speaking, the assessment of stability is based on writing the
potential energy in terms of a set of nonperiodic modes and t
, MAY 2004
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determining whether the equilibrium points~extrema! are maxima
or minima of potential energy with respect to amplitudes of the
functions. Agreement with independent numerical solutions a
previously known theoretical results is excellent well into t
post-buckling of the strut model.

The study of the stability of localized buckling is still in it
relative infancy. An important case that would be of considera
interest is the stability of localized solutions in the elastoplas
model developed in@3#. By adopting an unstable elastoplast
constitutive law, our analysis has revealed that structural local
tion is, roughly speaking, a precursor of material instabilities vi
bifurcating branch of unstable solutions for the particular mo
adopted therein.

The case highlighted here is that of dead loading where
applied force is the controlling parameter. The rigid loading ca
would be studied by takingU as in ~4! and minimizing it subject
to the integral constraintE5const.~see~5!!. This imposition re-
stricts behavior of the structure such that some regimes in wh
solutions are unstable under dead loading are in fact stable u
conditions of rigid loading,@10,25#. Fully numerical work shows
that the solution paths extend further into the regime and that a
a few oscillations of the snaking curve, the strut becomes unst
under rigid as well as dead loading—where the curve bends b
on itself. Such behavior is reminiscent of the severe post-buck
of shells and equilibrium positions on these parts of the curve
not physically realizable. However, in the early post-buckling ev
lution a study of the subtly distinct problem of rigid loading ma
prove enlightening from the perspectives of engineering and
plied mechanics.
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Parameter Analysis
of the Differential Model
of Hysteresis
The extended Bouc-Wen differential model is one of the most widely accepted ph
enological models of hysteresis in mechanics. It is routinely used in the characteriz
of nonlinear damping and in system identification. In this paper, the differential mod
hysteresis is carefully reexamined and two significant issues are uncovered. First
shown that the unspecified parameters of the model are functionally redundant. One
parameters can be eliminated through suitable transformations in the parameter s
Second, local and global sensitivity analyses are conducted to assess the relative
tivity of each model parameter. Through extensive Monte Carlo simulations, it is fo
that some parameters of the hysteretic model are rather insensitive. If the values of
insensitive parameters are fixed, a greatly simplified model is obtained.
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1 Introduction

Structures exhibit inelastic behavior under severe cyclic lo
associated with earthquakes, high winds, and recurrent wa
When the restoring force is plotted against the structural defor
tion, inelastic behavior often manifests itself in the form of hy
teresis loops. The area enclosed by each loop is a measure o
energy dissipated over a complete cycle as the result of inte
friction within the structure. In general terms, hysteresis refers
the hereditary and the memory nature of an inelastic system
which the restoring force depends not only on the instantane
deformation but also on the past history of deformation. Mecha
cal and structural systems capable of dissipating appreciable
ergy tend to possess large hysteresis loops. Hysteresis is thus
ticularly important in depicting the damping characteristics
inelastic systems. Yet, a fundamental and comprehensive theo
hysteresis has not been developed. In order to address pra
problems in the contemporary design and analysis of structu
phenomenological models of hysteresis are often used.

In the past few decades, various phenomenological mode
hysteresis have been proposed. One of the most widely acce
models is a differential model originally proposed by Bouc@1#
and subsequently generalized by Wen@2# and other researchers. I
this model the restoring force and deformation are connec
through a nonlinear differential equation containing unspecifi
parameters. By choosing the parameters suitably, it is possib
generate a large variety of different shapes of the hysteresis lo
The classical Bouc-Wen model contains only five loop para
eters. The generalized differential model in its present form c
tains 13 parameters; it can account for strength degradation,
ness degradation, and even pinching characteristics of an ine

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 1
2002; final revision, Sept. 19, 2003. Associate Editor: A. A. Ferri. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineering
versity of California–Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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structure. As the differential model becomes increasingly popu
questions concerning the complexity and consistency of the m
are brought up more frequently.

The extended Bouc-Wen model of hysteresis is carefully re
amined in this paper. Two significant issues are uncovered. Fir
is shown that the unspecified parameters of the model are f
tionally redundant. In either the classical or contemporary vers
one of the model parameters can be eliminated through suit
transformations in the parameter space. The number of mode
rameters can thus be reduced without affecting the system
sponse. Second, local and global sensitivity analyses are ca
out on the differential model of hysteresis. The global analy
employed is a probabilistic method recently expounded by So
and it can account for the mutual interactions of the paramet
Through extensive Monte Carlo simulations, the relative sensi
ity of each parameter is assessed. It is found that some param
of the model are rather insensitive. These insensitive parame
should perhaps be set to constant values, thereby resulting
greatly simplified hysteretic model.

The two issues discussed above are indeed significant in up
ing the differential model. In the literature, there are many ded
tions based upon the extended Bouc-Wen model of hysteresi
light of this update, some of these deductions may no longe
valid unless modified. The organization of this paper is as follo
In Section 2, the differential model of hysteresis in both its cla
sical and modern forms are reviewed. The reduction of unsp
fied parameters by transformation is then explained in Sectio
Sensitivity analysis of the differential model is reported in Sect
4. Finally, a summary of findings is provided in Section 5. As t
differential model of hysteresis becomes increasingly popula
theory and applications, it is hoped that the streamlining and
formulation reported in this paper will allow it to be used wi
added confidence in the years to come.

2 Differential Hysteresis
To describe the differential model of hysteresis, consider

inelastic system possessing a finite number of degrees-of-freed
Suppose the equation of motion can be decoupled and, along
direction of the generalized coordinateu, the system is governed
by

7,
the
l of
ni-

l be
E
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mü1cu̇1RT~u,z!5F~ t ! (1)

whereu is the system displacement,z is an imaginary hysteretic
displacement, andm, c are, respectively, the mass and dampi
coefficients. It is assumed that the excitationF(t) is cyclic. In the
development of the differential model, the total restoring for
RT(u,z) is separated into an elastic and a hysteretic componen

RT~u,z!5aku1~12a!kz (2)

where k is the stiffness coefficient and 0<a<1 is a weighting
parameter. Obviously, the restoring force is purely hystereti
a50; it is purely elastic ifa51. A diagrammatic representation o
the system is given in Fig. 1.

Basic hystersis loops may be generated if the hysteretic
placementz and the total displacementu are connected by the
nonlinear differential equation,@2#,

ż5Au̇2buu̇uuzun21z2gu̇uzun. (3)

There are five unspecified loop parametersA, a, b, g, n in Eqs.~1!
and~3!, which represent the classical Bouc-Wen model. Over
years, the original Bouc-Wen model has been extended sev
times. Many new parameters have been added to fit a variet
hysteretic shapes which include degradation and pinching.
result is a hysteresis model with 13 loop parameters given by

ż5h~z!H Au̇2n~buu̇uuzun21z1gu̇uzun!

h J . (4)

In the above expression,n andh are degradation shape function
@3#, andh(z) is a pinching shape function,@4#. In general, degra-
dation depends on the response duration and severity. A co
nient measure of the combined effect of duration and severit
the energy

E~ t !5E
0

t

~12a!kzu̇dt (5)

dissipated through hysteresis from initial timet50 to present time
t. Since

«~ t !5E
0

t

zu̇dt (6)

is proportional toE(t), it may also be used as a measure
response duration and severity. Many functional relations betw
n, h, and« are possible. From practical considerations, bothn and
h are assumed to depend linearly on« as the system evolves:

n~«!511dn« (7)

Fig. 1 Schematic diagram of an inelastic system
Journal of Applied Mechanics
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h~«!511dh«. (8)

Two unspecified degradation parametersdn and dh are thereby
introduced. The pinching functionh(z) takes the form,@5#,

h~z!512z1e2@z sgn~ u̇!2qzu#2/z2
2

(9)

where sgn(u̇) is the signum function ofu̇ and zu is the ultimate
value ofz given by

zu5S A

n~b1g! D
1/n

. (10)

The two functionsz1(«) andz2(«) control the progress of pinch
ing and are written as

z1~«!5zs@12e~2p«!# (11)

z2~«!5~c1dc«!~l1z1!. (12)

Six unspecified pinching parameterszs , q, p, c, dc , and l are
thus present. Altogether there are 13 loop parameters of hyste
A, a, b, g, n, dn , dh , zs , q, p, c, dc , andl. This generalized
model of hysteresis possesses all the important features obse
in real structures, which include strength degradation, stiffn
degradation, and pinching of the successive hysteresis loops.
probable role played by each of the thirteen loop parameter
summarized in Table 1. As an example of hysteresis loops ge
ated by the differential model, consider a structure with natu
frequencyf n52.8 Hz and damping factorz50.02 driven by the
scaled E-W component of the 1940 El Centro earthquake ov
duration of 15 seconds. PutA51, a50.01, b51.4, g50.2, n
51, dn50.002,dh50.001,zs50.95, q50.25, p52, c50.2, dc
50.005, andl50.1. When the restoring forceRT(u,z) is plotted
against the system displacementu in Fig. 2, the evolution of the
hysteretic path is clearly shown.

A differential model of hysteresis has many advantages
analysis. Chief among them is its ability to generate a large v
ety of realistic hysteresis loops. Another advantage is the coup
of the equation of motion~1! to loop equation~3! or ~4! to form an
overall differential system. This greatly facilitates subsequent t
oretical and numerical manipulations.

3 Elimination of a Redundant Parameter
Consider a nonlinear system governed by Eqs.~1! and ~4!.

From a strict mathematical standpoint, either@u,u̇,z#T or
@u,u̇,RT(u,z)#T can be taken as a solution vector. Note thatz is an
imaginary displacement whileRT(u,z) is a measurable force. Th
system response is usually chosen as@u,u̇,RT(u,z)#T since it is
directly connected to the hysteresis loops. Upon solution of E
~1! and ~4!, a graph ofRT(u,z) againstu is often compared to
experimental data from cyclic performance tests. A good fit wo
indicate that the loop parameters are specified properly. It mus
remembered, however, that the thirteen loop parameters are
pirical parameters; they are not derived from fundamental eq
tions of mechanics. It has never been claimed that all 13 par
eters are essential in producing the common features of hyster

Table 1 Parameters of differential model of hysteresis

Parameter Description

a Ratio of linear to nonlinear response
A, b, g Basic hysteresis shape control

n Sharpness of yield
dn Strength degradation
dh Stiffness degradation
zs Measure of total slip
q Pinching initiation
p Pinching slope
c Pinching magnitude
dc Pinching rate
l Pinching severity/rate interaction
MAY 2004, Vol. 71 Õ 343
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After all, the physical meanings of many of these parameters h
not been adequately clarified. A given set of loop parame
uniquely determines the system response, but a given resp
may not determine the parameters unambiguously. It would
very useful, particularly in system identification, if the number
unspecified parameters can be reduced.

It will be shown that a class of transformations in the parame
space can be devised to freeze one of the loop parameters wi
affecting the system response. The transformations always
one of the parameters to a constant in such a way that the sy
response, and hence the hysteretic trace, remains invariant. S
the hysteretic force (12a)kz is proportional tok, the stiffness
coefficient is used as an additional parameter to define the pa
eter set

P5$A,k,a,b,g,n,dn ,dh ,zs ,q,p,c,dc ,l%. (13)

Define a transformation fromP into

P̄5$Ā,k̄,ā,b̄,ḡ,n̄,d̄n ,d̄h ,z̄s ,q̄,p̄,c̄,d̄c ,l̄% (14)

so that

Ā51 (15a)

k̄5~a1A2aA!k (15b)

ā5
a

a1A2aA
(15c)

b̄5An21b (15d)

ḡ5An21g (15e)

n̄5n (15f)

d̄n5Adn (15g)

d̄h5Adh (15h)

z̄s5zs (15i)

q̄5q (15j)

p̄5Ap (15k)

Fig. 2 Example of hysteresis loops generated by the differen-
tial model
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c̄5
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A
c (15l)

d̄c5dc (15m)

l̄5l. (15n)

As a consequence, the value ofA is fixed at 1 under the above
transformation. It will be proved that when the parameters inP̄
are used in Eqs.~1! and ~4!, the same system respons
@u,u̇,RT(u,z)#T is obtained. WithP̄, the system equations be
come

muJ 1cuG 1R̄T~ ū,z̄!5F~ t ! (16)

zG5h̄~ z̄!H ĀuG 2 n̄~ b̄uuG uuz̄u n̄21z̄1ḡuG uz̄u n̄!

h̄ J . (17)

Note that both the excitation and initial conditions remain un
tered when the parameter set is changed fromP to P̄. Postulate
that

ū~ t !5u~ t !, uG ~ t !5u̇~ t !, z̄~ t !5
1

A
z~ t ! (18)

where u, u̇, z satisfy Eqs.~1! and ~4! with parameters fromP.
Observe that the energy term

«G 5uG z̄5
1

A
u̇z5

1

A
«̇. (19)

If there is no hysteretic energy dissipated att50, then upon inte-
gration

«̄~ t !5
1

A
«~ t !. (20)

The transformation~15! implies that

n̄511 d̄n«̄511Adn

1

A
«511dn«5n (21)

h̄511 d̄h«̄511Adh

1

A
«511dh«5h (22)

z̄1~ «̄ !5 z̄s~12e2p«!5zs~12e2Ap«/A!5zs~12e2p«!5z1~«!
(23)

z̄2~ «̄ !5~ c̄1 d̄c«̄ !~ l̄1 z̄1!5S 1

A
c1dc

1

A
« D ~l1z1!5

1

A
z2~«!

(24)

z̄u5S Ā

n̄~ b̄1ḡ !
D 1/n̄

5S 1

nAn21~b1g!
D 1/n

5S A

n~b1g! D
1/n 1

A
5

1

A
zu (25)

and

h̄~ z̄!512 z̄1e2~ z̄ sgn~uG !2qzu!2/ z̄2
2

512z1e2~z/Asgn~ u̇!2qzu /A!2/~z2
2/A2!5h~z!. (26)

It can now be verified by substitution that the postulated relati
in ~18! satisfy Eqs.~16! and ~17!. Moreover,
Transactions of the ASME
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R̄T~ ū,z̄!5ā k̄ū1~12ā !k̄z̄

5
a

a1A2aA
~a1A2aA!ku

1S 12
a

a1A2aAD ~a1A2aA!k
1

A
z

5RT~u,z!. (27)

Thus@u,u̇,RT(u,z)#T5@ ū,uG ,R̄T(ū,z̄)#T, and Eqs.~1! and~4! pro-
duce the same system response from eitherP or P̄. In other
words, the solution vector@u,u̇,RT(u,z)#T is invariant under
transformation of the parameter set fromP to P̄. The hysteretic
traces associated withP and P̄ are identical. The parameterA is
redundant and can be eliminated from the differential mode
hysteresis using transformation~15!. The same can be said abo
the classical Bouc-Wen model~1! and ~3!, for which the number
of parameters can be reduced from five to four.

Instead of the parameterA, one can choose to fixa, b, g, dn ,
dh , p, or c in the extended differential model, subject to certa
restrictions. For example, the sign ofg cannot be changed anda
cannot be fixed at 1. As an illustration, the following transform
tion will eliminate the parameterdn :

d̄n51 (28a)

Ā5dnA (28b)

k̄5S a1
1

dn
2

a

dn
D k (28c)

ā5
a

a1
1

dn
2

a

dn

(28d)

b̄5dn
12nb (28e)

ḡ5dn
12ng (28f)

n̄5n (28g)

d̄h5
1

dn
dh (28h)

z̄s5zs (28i)

q̄5q (28j)

p̄5
1

dn
p (28k)

c̄5dnc (28l)

d̄c5dc (28m)

l̄5l. (28n)

If the indicesn and h are interchanged, a corresponding set
transformation equations is obtained for mappingdh to 1. In sys-
tem identification, the loop parameters are estimated from exp
mental data on hysteresis loops taken from cyclic performa
tests,@6–8#. The values ofdn anddh estimated from wood struc
tures are usually much less than 1. It therefore seems more
venient to mapA to 1. This will be assumed in the next sectio
The differential model is streamlined whichever parameter
chooses to fix. In particular, elimination of one parameter w
appreciably accelerate the convergence of numerical algorithm
system identification.

It must be pointed out that functional dependence of the lo
parameters in the classical model~3! was discovered earlier by N
et al. @9#. When applied directly to the extended model, the t
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transformations given by Ni et al.@9# will absorb eitherA or k but
will not preserve the hysteretic trace unless the extended pa
eters are also transformed. The class of transformations devis
the present paper may be regarded as a generalization of
earlier investigation.

4 Parameter Sensitivity Analysis
Assume that transformation~15! has been applied to fix the

value ofA at 1. There remain 12 loop parameters in the exten
Bouc-Wen differential model. Does every parameter contrib
equally to the system response? Will variations in some par
eters combine to annul the effect of each other? Attempts w
made in the past to understand the influence of each paramet
the system response. For example, Baber and Noori@4# investi-
gated the effect of variations ofA, n, n, h, z1 , andz2 on the ratio
between hysteretic and total displacement. Wong et al.@10# stud-
ied the steady-state response of structures with different value
the loop parametersb, g, andn. Later on, a more organized stud
of local sensitivity was conducted by Ni et al. with the classic
model ~3! containing five parameters,@9#. Despite numerous ap
plications of the extended Bouc-Wen model@11,12#, there is
hardly any systematic and comprehensive study of the influe
of loop parameters on the system response. One basic objecti
the current paper is to address this overlooked issue by condu
sensitivity analysis.

The sensitivity of a model with respect to an input paramete
the degree to which the parameter affects the model output. S
sitivity analysis is the study of how changes in the output o
model can be apportioned, qualitatively or quantitatively, to var
tions in different input parameters. There is a large class of te
niques for parameter sensitivity analysis. A review of some of
popular methods is given by Hamby@13#, and Iman and Helton
@14#. In this paper, the one-factor-at-a-time method and the So
sensitivity indices are used.

4.1 Local Sensitivity Analysis. The simplest way to con-
duct sensitivity analysis is to repeatedly vary one parameter
time while holding the others fixed at chosen nominal values. T
is referred to as one-factor-at-a-time method. It is easy to imp
ment, often computationally inexpensive, and useful in provid
a graphical representation of sensitivity ranking. However, it i
local method in the sense that it only addresses sensitivity rela
to the chosen base values and not for the entire parameter s
How the base values should be chosen is often an issue itse
addition, interactions of parameters cannot be addressed by
local method.

As a typical example of local sensitivity analysis, a shear w
of the type described in@8# is used. The shear wall has a natur
frequencyf n53.6 Hz and damping factorz50.02. It is driven by
the scaled E-W component of the 1940 El Centro earthquake
a duration of 10 seconds, as shown in Fig. 3. Select as base v
a50.05,b51, g50.1, n51.5, dn50.025,dh50.15,zs50.85,q
50.15, p52.5, c50.1, dc50.005, andl50.5. Each of these 12
parameters is then varied, one at a time, by up to 50% from
base value while holding all other parameters at the base posi
The choice of the base values is such that the resulting ra
spanned by each parameter is well within the usual range
fitting the experimental hysteresis loops of wood structures.
note the system response by@x1 ,x2 ,x3#T5@u,u̇,RT(u,z)#T at the
base values and by@y1 ,y2 ,y3#T when one parameter, sayw, is
varied. Define the root-mean-square error

ew5F(
i 51

M

$~x1i2y1i !
21~x2i2y2i !

21~x3i2y3i !
2%G 1/2

(29)

whereM is the number of sampling points. PutM5500 in this
example. A spider diagram is obtained whenew is plotted against
the varied parameterw, as shown in Fig. 4. As eachw is varied
over its range, the maximum error
MAY 2004, Vol. 71 Õ 345
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Fig. 3 Scaled east-west ground acceleration component of 1940 El Centro earth-
quake
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is recorded. These maximum values may be used as a measu
sensitivity. Based uponiewi , the 12 loop parameters of hysteres
are ranked in order of decreasing sensitivity in Table 2. With t
slightly different sets of base values, it is found that the sensitiv
ranking given in Table 2 does not change. It must be emphas
that any conclusion reached through local sensitivity analysi
limited by the choice of base values. It is also limited by t
excitation used. However, an inspection of Fig. 3 suggests cle
that the chosen excitation can only be synthesized by a large n
ber of sinusoidal functions. That means its Fourier spectrum c
sists of many characteristic frequencies. Thus results obta
with the chosen excitation would be typical of a large class
cyclic excitation.

4.2 Global Sensitivity Analysis. Most techniques for globa
sensitivity analysis were developed fairly recently. In global s

Fig. 4 Spider diagram generated by the one-factor-at-a-time
method
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sitivity analysis, it is not necessary to choose any base val
Sensitivity with respect to a parameter is assessed when all m
parameters vary simultaneously, instead of one at a time. Of
times the sensitivity with respect to a group of parameters can
be assessed. A sensitivity index is a number that gives quantita
information about the relative sensitivity of the model with r
spect to selected parameters. In this sense the numberiewi de-
fined in Eq. ~30! is a local sensitivity index. A set of powerfu
global sensitivity indices is the group of Sobol indices,@15#.

Supposef (x)5 f (x1 ,¯,xn) is a real integrable function de
fined on the n-dimensional unit cube I n5$xu0<xi<1,
i 51,̄ ,n%. Let

f 05E
I n

f ~x!dx (31)

f i~xi !5E
I n21

f ~x!dx/dxi2 f 0 (32)

wheredx/dxi denotes the product of all thedxk exceptdxi , and

f i j ~xi ,xj !5E
I n22

f ~x!dx/dxidxj2 f 02 f i~xi !2 f j~xj !. (33)

Table 2 Parameter sensitivity ranking

Parameter
w

Local Analysis Global Analysis

iewi Rank

Sobol Index Total Effect Index

Sw Rank Sw
T Rank

a 83.69 1 0.0894 2 0.2806 2
b 25.82 5 0.0410 4 0.1451 5
g 24.31 6 0.0379 5 0.0962 7
n 19.10 8 0.0339 7 0.0930 8
dn 4.78 12 0.0288 9 0.0151 12
dh 30.35 4 0.0308 8 0.2781 3
zs 80.91 2 0.2803 1 0.6486 1
q 13.16 9 0.0377 6 0.0583 10
p 42.54 3 0.0255 10 0.0891 6
c 24.27 7 0.0449 3 0.1928 4
dc 10.49 11 0.0234 12 0.0574 11
l 12.73 10 0.0238 11 0.0742 9
Transactions of the ASME
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In this way one can define inductively allf i 1 ,¯,i s
(xi 1

,¯,xi s
) for

any subset of variablesxi 1
,¯,xi s

with indices 1< i 1,¯, i s

<n. Furthermore, let

D5E
I n

f 2~x!dx2 f 0
2 (34)

Di 1 ,¯,i s
5E

I s
¯E f i 1 ,¯,i s

2 ~xi 1
,¯,xi s

!dxi 1
¯dxi s

. (35)

It has been established by Sobol that, under the assumption tx
is uniformly distributed inI n, the quantity

Si 1 ,¯,i s
5Di 1 ,¯,i s

/D (36)

is a measure of the global sensitivity of the functionf (x) with
respect to the group of variablesxi 1

,¯,xi s
. The quantitySi 1 ,¯,i s

is termed a Sobol sensitivity index. It can be proved that

( Si 1 ,¯,i s
5(

i 51

n

Si1( (
1< i , j <n

Si j 1¯1S1,2,̄ ,n51.

(37)

In other words, the sum over all the different groups of indices
one. There is a total 2n21 Sobol indices forf (x). All the inte-
grals in the Sobol indices can be evaluated by Monte Carlo si
lations,@16#. The amount of computational effort can be substa
tial if n is large. To speed up the convergence of Monte Ca
integration, probably the most effective way is to use qua
random numbers,@17#, instead of pseudo-random numbers f
choosing the samples. Other variance reduction schemes su
antithetic variates,@18#, may also be employed. In this pape
Latin hypercube sampling,@19#, is used instead of the crud
Monte Carlo sampling. As a result, the sampling size is gener
reduced to about one third of the original size.

Based upon the development of Sobol, Homma and Saltelli@20#
have introduced another set of sensitivity indices to measure
mutual interactions of parameters. A given parameterxj can inter-
act with other parameters in groups of two, three, or more m
bers. In view of Eq.~37!, the ‘‘total effect’’ index with respect to
xj is defined as

Sj
T512(

i kÞ j
Si 1 ,¯,i s

(38)

where the sum is over all the different groups of indices that
not includej. The indexSj

T provides a measure of the total sen
tivity with respect toxj , which includes its interactions with othe
model parameters. A scheme has been developed,@20#, for the
calculation of the ‘‘total effect’’ indices that economizes on co
memory and computing time. Both the Sobol indexSj and the
total sensitivity indexSj

T will be computed in this paper.
There are, of course, other competing methods for global s

sitivity analysis,@21,22#. These alternative methods are all bas
upon the conditional variances of model output. Among them,
Fourier amplitude sensitivity test~FAST! is considered the mos
elegant. However, it has been shown that FAST and Sobol ind
generate nearly identical sensitivity ranking in a number of t
cases,@23#. The Sobol sensitivity indices are generally superior
FAST and other global sensitivity indices in that the sing
parameter indicesSi and multiparameter indicesSi 1 ,¯,i s

can be
represented by the same Eq.~36! and they can also be calculate
in a similar fashion.

In reporting the results of global sensitivity analysis, the sa
shear wall described earlier will again be used. Recall that
shear wall has a natural frequencyf n53.6 Hz, damping factor
z50.02, and is driven by the scaled E-W component of the 1
El Centro earthquake over a duration of 10 seconds. Recall
the value ofA is fixed at 1 by transformation~15!. After an ex-
amination of the large amount of experimental data on wo
Journal of Applied Mechanics
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structures, it is decided that acceptable ranges for the remai
12 parameters are 0<a<0.1, 0.5<b<1.5, 20.3<g<0.5, 0<n
<3, 0<dn<0.05, 0<dh<0.3, 0.7<zs<1, 0<q<0.3, 0<p<5,
0<c<0.2, 0<dc<0.01, and 0<l<1. The Sobol sensitivity index
of the system response with respect to each of the paramet
evaluated through Monte Carlo simulations. In contrast to lo
analysis, no base values need to be specified. The ‘‘total eff
index associated with each parameter is also calculated. Even
a streamlined program, the computation of the total sensitiv
indices often requires long run-time. The various indices are c
lected together in Table 2.

4.3 Discussion of Results. It is observed from Table 2 tha
the ranking generated by the local sensitivity analysis larg
agrees with that by global analysis. In addition, the ranking g
erated by the Sobol indicesSw closely matches that by the tota
sensitivity indicesSw

T . This might suggest that interactions amon
various parameters are not significant over the range speci
Both the local and global methods indicate thata andzs are the
most sensitive parameters. On the other hand,dn , dc , andl are
probably the least sensitive parameters. None of the unspec
parameters in the classical Bouc-Wen model are insensitive.
variation of an insensitive parameter would not apprecia
change the system response. It would not appreciably alter
hysteresis loops. Perhaps the values of these insensitive para
should be fixed, thereby simplifying the differential model of hy
teresis.

As an illustration, consider the shear wall used previously
sensitivity analysis. With the exception ofdn , let all other param-
eters take the base values specified earlier in the one-factor-
time analysis. Letdn take the values 0, 0.05, and 0.1 successive
It is observed that the first two values are, respectively, the lo
and upper limits of the range ofdn specified in global analysis
The third value is even outside the range. The system resp
corresponding to these three values ofdn is computed, and the
displacementu of the shear wall is plotted in Fig. 5. The solid lin
is associated withdn50, the dashed line withdn50.05, and the
dash-dotted withdn50.1. One can see that there is little diffe
ence in the three system displacements. It therefore seems fea
to fix dn at, say, the midrange value of 0.025.

Information on parameter sensitivity is particularly valuable
system identification and system optimization. In these areas
tain error functional is minimized. A sensitive parameter far aw
from its sought-after value will generally cause an apprecia
increase in the error functional. As a result, convergence can
accelerated with various numerical schemes. On the other h
an insensitive parameter tends to drift around its sought-a
value since changes in its value contribute little to the error fu
tional. This could cause many problems in convergence. Clea
great simplification results if the insensitive parameters can
fixed. It must be emphasized that global sensitivity ranking re
appreciably on the range of variation of each parameter. Over
range specified,dn , dc , andl are rather insensitive parameter
This observation should be reassessed for a different rang
variation.

5 Conclusions
The extended Bouc-Wen differential model is one of the m

widely accepted phenomenological models of hysteresis in
chanics. It is routinely used in the characterization of nonlin
damping and in system identification. In this model the restor
force and system displacement are connected through a nonl
differential equation containing unspecified parameters. By cho
ing the parameters suitably, it is possible to generate a large v
ety of different shapes of the hysteresis loops. The classical Bo
Wen model contains only five control parameters. The general
differential model in its present form contains 13 parameters
can account for strength degradation, stiffness degradation,
even pinching characteristics of an inelastic structure. In this
MAY 2004, Vol. 71 Õ 347
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Fig. 5 Effect of varying the insensitive parameter dn
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per, the differential model of hysteresis has been carefully re
amined. Mathematical transformations have been devised
freeze one of the unspecified parameters without affecting
system response. Local and global sensitivity analyses have
conducted to assess the relative sensitivity of each control pa
eter. The various parameters have been ranked in order of dec
ing sensitivity with three different methods. Although a limited s
of data is presented, extensive numerical calculations have
performed by the authors to support any qualitative results her
For example, in global analysis sensitivity indices with respec
a group of two or more parameters are not reported because
are 2122121254083 such indices. Major findings are summ
rized in the following statements.

1. The unspecified parameters of the differential model
functionally redundant. One of the parameters can be eli
nated through suitable transformations in the param
space. This is true for both the classical and the exten
differential models of hysteresis.

2. In the extended differential model, there are three or f
unspecified parameters that have been consistently rank
or near the bottom of the sensitivity scale. If the values
these insensitive parameters can be fixed, a greatly sim
fied model is obtained. None of the unspecified parame
in the classical Bouc-Wen model are insensitive. Any sta
ment made through local sensitivity analysis is limited
the choice of base values, while global sensitivity analysi
limited by the choice of the range of variation of the para
eters.

3. Over a practical range, it appears that interactions am
various unspecified parameters in the extended differen
model are not significant. It is not claimed that the range
variation selected for global sensitivity analysis in this pap
covers all applications. The total sensitivity indices shou
be re-evaluated for each application that involves a rang
variation not covered by the selected range.

As explained earlier, the cyclic excitationF(t) chosen for sen-
sitivity analysis possesses a rich spectrum. Thus the above s
ments on sensitivity are applicable for a large class of cyclic
citation. However, these statements on sensitivity may not
valid for an excitation whose spectrum has little overlap with t
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of the chosen excitation. Among other things, it is hoped that
present paper would point to directions along which further
search efforts to refine the differential model can be profita
made. It appears feasible, for example, to determine if ene
dissipation should indeed be separated additively into an ela
and hysteretic component. Perhaps there is an even closer r
sentation of reality if the total energy is divided according to
power law. As the differential model of hysteresis becomes
creasingly popular in theory and applications, the update repo
in this paper will hopefully allow it to be used with added con
dence in the years to come.
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Frictional Collapse of Granular
Assemblies
The frictional collapse of an assembly of equisized spheres is studied by a discret
ment model. The macroscopic constitutive response is determined as a function
level of Coulomb friction between particles. It is found that the level of Coulomb fric
has a strong effect upon the relative proportion of sliding and rolling between partic
and consequently upon the macroscopic strength of the granular assembly. The d
element predictions are shown to be in good agreement with experimental results ob
from triaxial tests on an aggregate of steel spheres. It is demonstrated that the sha
the collapse surface can be adequately represented by the Lade-Duncan cont
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1 Introduction
Since the pioneering work of Cundall and Strack@1#, discrete

element models~DEM! have been popular for analyzing the m
chanical characteristics of granular materials; see, for exam
@2–9#. Most studies focus on two-dimensional particle configu
tions, where the particles are represented by circular disks.
though two-dimensional discrete element analyses have prov
insight into the mechanical response of particle assemblies,
are of limited value in simulating the behavior of advanced la
ratory experiments. The response to complicated loading pa
such as those applied to a granular material in a true triaxial
paratus,@10,11#, can only be adequately simulated by means
three-dimensional numerical analyses.

Apart from the direct simulation of laboratory tests, thre
dimensional discrete element analyses are useful for the deve
ment and verification of continuum models of granular comp
tion and flow. The use of macroscopic stress and strain meas
to characterize the deformation state of a granular assemb
valid provided the representative volume element contains a
ficiently large number of particles; under such conditions, the
of average macroscopic variables with a continuum constitu
law leads to major advantages in computational economy c
pared with the discrete element method.

Various micromechanical models have been derived by
mogenisation of microstructural particle interactions,@12–19#, al-
though checks on their accuracy by comparison with experim
and with discrete element simulations are lacking. Typically,
micromechanical descriptions are based on upper and lo
bounds of the true response. For example, the assumption of
fine deformation’’ gives an approximation for the deformation
the particle contact level in terms of the imposed macrosco
strain field over the particle assembly. This kinematic assump
is often made in the homogenization of granular materials,@12–
16,20,21#, and commonly results in an overprediction of the ma
roscopic strength and stiffness,@22–24#.

In this paper the discrete element method is used to study
frictional behavior of three-dimensional particle assemblies. T
macroscopic constitutive response under axisymmetric stress
ditions is determined as a function of the level of Coulomb fr
tion between particles. These predictions are compared to ex
mental results obtained from triaxial tests on an aggregate of s

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
22, 2002; final revision, October 9, 2003. Editor: R. M. McMeeking. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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spheres. Furthermore, to reveal the degree of local particle r
rangement by sliding and rotation, the assembly of discrete
ticles is subjected to three different kinematic conditions:~1! both
particle sliding and particle rotation are allowed to occur,~2! par-
ticle sliding is permitted, but particle rotation is prevented, and~3!
particle sliding is allowed to occur in accordance with an affi
deformation field, while particle rotation is prevented. Finally, t
collapse surface is computed in the deviatoric plane of princ
stress space by subjecting the three-dimensional granular as
bly to a set of proportional stress paths.

2 Particle Assembly Simulated by Discrete Element
Model

The mechanical behavior of a three-dimensional assembly
elastic-frictional particles is studied by employing the discrete
ement program Particle Flow Code~PFC!.1 In this discrete ele-
ment program, the system of equations describing the dyna
interaction of an assembly of spherical particles is solved by us
an explicit time-stepping scheme; at each time step the chang
the interparticle forces is computed from the relative velocities
the particle contacts via the incremental force-displacement r
tion for each contact. After updating the interparticle forces,
new out-of-balance force at each particle contact is determi
and used to calculate the new translational and rotational par
accelerations from Newton’s law of motion. Integration of th
particle accelerations provides the particle velocities and ther
the particle displacements. The particle displacements give
new particle positions, after which, by using the updated velo
ties at the particle contacts, the procedure is repeated. Check
carried out to determine if contacts have become establishe
have ceased to exist. The normal force versus overlap contac
obeys the well-known Hertzian theory; see, for example,@25#. The
contact is either fully sticking~with the tangential stiffness set b
the contact area! or undergoes full slip in accordance with th
Coulomb friction criterion

u f d
cu<2 f n

c tanfc (1)

wheref n
c is the normal contact force,f d

c is the shear contact force
and fc is the friction angle at the particle contactc. Since the
particle contacts are supposed to have no resistance agains
sion, the normal and shear contact forces are set to zero if
overlap between two particles becomes less than zero. For a m
detailed description of the above method, see@1,26#.

The geometry used in the computations consists of a cubo
volume that is randomly filled with spherical particles, see Fig.
The particles of the granular assembly are allowed to rotate,
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less otherwise stated. Astrain-controlled loading path is pre-
scribed by moving the outer walls of the cube towards each ot
where the relative wall velocityu̇i

wall is related to the averag

macroscopic deformation rate of the assembly,Ėi j , by

u̇i
wall5Ėi j L j (2)

with L j the relative position between points on two opposite fa
of the cube. The normal contact stiffness at the walls is chose
be sufficiently high, such that the walls act as ‘‘rigid’’ objects. T
tangential contact stiffness at the walls is set to zero, i.e.,
boundary particles may freely slide along the walls.

In order to minimize the inertia forces in a quasi-static analy
the wall velocity needs to be relatively small. Accordingly, t
number of discrete time steps required for reaching a macrosc
deviatoric strain of 5% is specified to lay between 1.03105 and
1.63105. Additional checks have shown that for a selected p
ticle density of 2650 kg/m3 this number of time-steps leads t
negligibly small inertia forces. Astress-controlledloading path is
prescribed by means of a servo-control algorithm, which adju
the wall velocitiesu̇i

wall to reduce the error between the measu
stressS i j and the desired stressS i j

des. This servo-control algo-
rithm has the form

u̇i
wall5gj~S i j 2S i j

des! (3)

wheregj is the gain, whose appropriate values have been de
mined by trial and error. The Cauchy stressS i j represents the
spatial average over a so-called ‘‘measurement sphere,’’ an
determined by using the well-known expression@12,17,18,27#

S i j 5
1

2V (
c51

C

~ f j
cl i

c1 f i
cl j

c! (4)

whereV is the volume of the measurement sphere,C is the total
number of particle contacts in the measurement sphere,l i

c is the
branch vector that connects the centers of two neighboring
ticles in contact, andf j

c is the contact force at contact ‘‘c.’’ The
center of the measurement sphere corresponds to the center
cuboidal volume, and the diameter of the measurement sp
equals the width of the cuboidal volume.

2.1 Convergence Study for Effective Medium Calculation
In the discrete element model, a sufficiently large number of p
ticles needs to be determined for mimicking the response o
continuum. This is done by analyzing the response of a cubo
volume of equi-sized spherical particles~often called a ‘‘mono-
disperse packing,’’@28#!, loaded in axisymmetric compression,

Fig. 1 Cuboidal volume LÃLÃL of equi-sized spheres with
radius r , subjected to principal stresses S1 , S2 , and S3
Journal of Applied Mechanics
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S1,S25S3<0. Here, S1 , S2 , and S3 denote the principal
stresses in the longitudinal direction,x1 , and the transverse direc
tions of the specimen,x2 and x3 , respectively. Stress measure
that are commonly employed for describing the mechanical
havior of isotropic particle assemblies are the deviatoric str
~invariant! Sdev ~also known as the ‘‘von Mises stress’’! and the
hydrostatic stress~invariant! Shydr, given by

Sdev5A3

2
S i j8 S i j8

(5)

Shydr5
1

3
Skk .

Here and below, a repeated suffix denotes summation andS i j8 is
the deviatoric stress tensor according toS i j8 5S i j 2Shydrd i j , with
d i j the well-known Kronecker delta symbol. The stress measu
Sdev and Shydr are work conjugates to the deviatoric strain ra
Ėdev and volumetric strain rateĖvol, respectively, where

Ėdev5A2

3
Ėi j8 Ėi j8

(6)

Ėvol5Ėkk

and Ėi j8 is the deviatoric strain rate tensor given byĖi j8 5Ėi j

21/3Ėvold i j . For an axisymmetric stress configuration, Eq.~5!
simplifies to

Sdev5uS12S3u
(7)

Shydr5
1

3
~S112S3!

and the corresponding strain rates, Eq.~6!, simplify to

Ėdev5
2

3
uĖ12Ė3u

(8)

Ėvol5Ė112Ė3

whereĖ1 is the longitudinal strain rate, andĖ3(5Ė2) is the trans-
verse strain rate.

Two different particle sizes are considered; particles with a
dius r 50.05L ~cuboidal volume of 1145 particles!, and particles
with a radius r 50.025L ~cuboidal volume of 9167 particles!,
whereL is the length of the sides of the cuboidal volume, see a
Fig. 1. After generation of the discrete particle assembly, a c
fining pressureSconf is applied onto the outer walls of the cuboid
volume, thereby invoking the servo-control algorithm, Eq.~3!.
During application of the confining pressure, a small amount
interparticle friction is introduced (fc514 deg) in order to reduce
the time necessary to satisfy the convergence criterion

S i2S i
des

S i
des

,b with i P$1,2,3% (9)

where the toleranceb is set to 5.031023. Note that the conver-
gence criterion includes all three principal stresses.

Three different confining pressures are considered, which
terms of the particle shear modulusGpart are: Sconf/Gpart522.5
31026, 25.031026 and27.531026. These ratios reflect a par
ticle system that is close to therigid-sphere limit (Sconf/Gpart

50). The porosityp of the granular specimen after application
the confining pressureSconf/Gpart525.031026 is 0.382. For the
confining pressuresSconf/Gpart522.531026 and 27.531026

the initial porosity is slightly higher and lower, respectively. Th
particle shear modulus and Poisson’s ratio are taken asGpart

520 GPA andnpart50.20, respectively. When the particle syste
has achieved equilibrium with the confining pressure~i.e. Eq.~9!
MAY 2004, Vol. 71 Õ 351
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is satisfied!, the initial contact friction angle is incremented to th
actual contact friction angle, which here equalsfc524 deg. Sub-
sequently, strain-controlled axial shortening is applied~in corre-
spondence with Eq.~2!! at fixed confining pressure. Loading
terminated when the deviatoric strain has attained the valueEdev

55%: this value is considered to be the limit of applicability
small strain theory.

In Figs. 2~a! and 2~b! the evolution of the stress rati
2Sdev/Shydr is plotted against the deviatoric strainEdev, for the
particle radiir /L50.05 andr /L50.025, respectively. The maxi
mum stress level is reached at a deviatoric strain of approxima
2%, and shows only a mild difference in magnitude for the t
cases considered. After reaching the maximum stress level
stress remains almost constant under increasing deformation
steady-state collapse occurs. In both figures, the normal
stress-strain relations are independent of the level of confin
pressure, implying that the collapse value of macroscopic de
toric stress increases in proportion to the macroscopic hydros
pressure. The small differences between the individual str
strain curves are driven by bifurcations of particle equilibriu
states. If, for two granular samples, the initial characteristics at
particle level differ only slightly,~associated with different initia
confining pressures!, the equilibrium path to be followed will be
different; this effect is more pronounced at the macroscopic le
when the representative volume contains a smaller number of
ticles, see Figs. 2~a! and 2~b!. Similar bifurcations are observed i

Fig. 2 Stress-strain response under axisymmetric compres-
sion; three confining pressures: Sconf ÕGpartÄÀ2.5Ã10À6, À5.0
Ã10À6 and À7.5Ã10À6

„contact friction angle fcÄ24 deg …. „a…
Particle radius rÄ0.05L . „b… Particle radius rÄ0.025L .
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laboratory tests on relatively coarse, noncohesive granular m
rials, @29#, with the actual sequence of local stick-slip events b
tween particles depending upon the initial compaction level of
material. The smoothness of the individual curves depicted in
2~b! indicate that the discrete system withr /L50.025 responds
like a continuum.

The strain response~measured after the initial confining pres
sure was applied! is shown in Fig. 3 for the aggregate of sma
particles (r /L50.025). It can be seen that the response is ide
cal for the three confining pressures considered and that pro
tional straining is achieved when the deviatoric strain exceeds

2.2 Influence of Contact Friction Angle Upon Macroscopic
Response. The influence of the contact friction anglefc on the
response is examined by simulating an axisymmetric compres
test on a cuboidal volume of small particles,r /L50.025. Four sets
of simulations were performed, withfc54 deg, fc514 deg,
fc524 deg, andfc534 deg. The specimen preparation a
loading procedure are similar to those outlined in the previo
section. In each simulation the confining pressure was se
Sconf/Gpart525.031026, corresponding to an initial porosity o
p50.382. Figure 4 depicts the macroscopic stress-strain cu

Fig. 3 Deformation characteristics under axisymmetric com-
pression; three confining pressures: Sconf ÕGpartÄÀ2.5Ã10À6,
À5.0Ã10À6 and À7.5Ã10À6

„contact friction angle fcÄ24 deg,
particle radius rÄ0.025L …

Fig. 4 Stress-strain response under axisymmetric compres-
sion; the contact friction angles are: fcÄ4 deg, 14 deg, 24 deg,
and 34 deg. Unconstrained and constrained particle rotation.
Transactions of the ASME
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for the various contact friction angles considered. The ultim
collapse level increases for an increasing contact friction an
The results of simulations with particle rotation prevented are
cluded in the figure, and will be discussed in more detail in
subsequent section.

In order to elaborate upon the macroscopic collapse behavio
is instructive to introduce the following set of internal state va
ables for the particle assembly: thesliding contact fraction sf ,
defined by the ratio of the number of sliding contacts to the to
number of contacts in the particle assembly, thecoordination
number n̄, which is theaveragenumber of contacts per particle
and theporosity p, which equals the ratio of the void volume t
the total volume occupied by the particle assembly. The stea
state values of the parameters~i.e., the values atEdev55%) are
plotted in Figs. 5~a! to 5~c! as a function of the contact friction
anglefc. The initial value ofp ~after the confining pressure ha
been applied but withEdev50%) is included in Fig. 5~c!, and is
represented by the dashed line. The plots contain results for
constrained particle rotation and for full constraint against part
rotation; in each case the relative sliding of particles can occu
accordance with the Coulomb friction law, Eq.~1!.

Consider first the sliding contact fractionsf , as shown in Fig.
5~a!. At steady-state collapse the number of sliding contacts
creases with increasing contact friction angle, which reflects
increase of the macroscopic strength. At the highest contact
tion angle considered,fc534 deg, only about 10% of the tota
number of particle contacts is sliding, indicating that rolling
particles dominates. Both for constrained and unconstrained
ticle rotations the sliding contact fraction approaches zero in
limit of infinite contact friction; i.e.,sf→0 whenfc→90 deg. In
the limit of frictionless particles,fc→0 deg, the sliding contac
fraction for constrained and unconstrained particle rotati
should also be identical, since the deformation mechanism by
ticle rolling becomes inactive for particles with ideally smoo
contact surfaces. The sliding contact fractionsf is expected to
approach 1.0 whenfc→0 deg, and the anticipated trends towar
this limit have been indicated in Fig. 5~a! by the dashed lines. The
limiting value of unity can be explained by recalling that the sl
ing contact fractions plotted in Fig. 5~a! reflect systems of nearly
rigid particles that are inneutral mechanical equilibrium~i.e., a
particle system that is on the verge of instability, as indicated
Fig. 4 by the horizontal tangential slope of the stress-strain cu
at Edev55%). For a system of rigid frictionless particles, a state
neutral mechanical equilibrium can be reached under isotro
loading conditions, where a network of normal contact forces
established that keeps the particle assembly just stable. Whe
particle system is subsequently subjected to a small devia
loading perturbation, all particle chains inside the contacts n
work will immediately collapse since the tangential resistance
every particle contact is equal to zero. Hence, all particle cont
will be subjected to sliding, and thussf51.0. Since this collapse
mechanism corresponds to zero macroscopic shear strength
difficult, if not impossible, to adequately simulate it by means o
discrete element analysis.

As pointed out in@30#, a minimumaverage coordination num
ber is geometrically required in order to construct a system
rigid spherical particles that is in a state of neutral equilibriu
Packing structures corresponding to a minimum average coo
nation number are sometimes calledisostatic packings, @31#. For a
three-dimensional isostatic packing of rigid, equi-sizedfriction-
lessspheres, the~minimum! coordination number is equal to 6
@30#. This value is recovered by extrapolating the curves for
constrained and constrained particle rotation in Fig. 5~b! towards
fc50 deg. For a three-dimensional isostatic packing of rig
equi-sizedfrictional spheres which undergo no relative slip, th
~minimum! coordination number is equal to 4,@32#. Again, in Fig.
5~b! this appears to be the asymptotic limit to which the curve
the unconstrained particle rotation decreases under increa
contact friction. In contrast, the curve for constrained parti
Journal of Applied Mechanics
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rotation is expected to approach zero in the limit of infinite co
tact friction. This can be explained as follows. As discussed
@30#, the minimum coordination number necessary for geometri
stability of a particle structure is directly related to the numb

Fig. 5 Influence of contact friction angle fc on macroscopic
internal state variables „for unconstrained and constrained par-
ticle rotation …. „a… Sliding contact fraction s f at steady-state col-
lapse „EdevÄ5%…. „b… Coordination number n̄ at steady-state
collapse. „c… Porosity p at initial state „dashed line … and at
steady-state collapse „solid line ….
MAY 2004, Vol. 71 Õ 353
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of internal degrees of freedom of the particle structure. An
crease in contact friction leads to an increasing constraint on in
particle sliding, whereby in the limit of infinite contact friction th
internal degrees-of-freedom related to inter-particle sliding
come fully constrained. The prevention of both inter-particle sl
ing and rolling turns the granular assembly into a rigid body w
infinite shear strength and shear stiffness. Towards this limit c
the sliding contact fraction approaches zero,sf→0; thus, most of
the particles in the system will be ‘‘floating’’~i.e., these particles
do not transmit quasi-static forces to neighboring particles!. The
minimum coordination number then approaches zero becaus
infinite sample strength will be determined by a stable, rigid n
work of only a small number of contacting particles.

For the case of unconstrained particle rotation, curves wit
trend similar to that in Fig. 5~b! were reported in@31#. Neverthe-
less, the particle systems of equi-sized spheres studied in@31#
were obtained directly after particle deposition, which resulted
moderately stable packings with coordination numbers that
somewhat higher~between 4.5 and 6.2! than the coordination
numbers for isostatic packings of rigid spheres,@30,32#.

When considering the dependence of the porosityp at Edev

55% upon the contact friction anglefc, see Fig. 5~c!, it appears
that p increases slightly under increasingfc. Combining this
curve with the initial porosityp50.382, it follows that for the
lowest friction angle,fc54 deg, the granular assembly with un
constrained particle rotation compacts, and for greater frict
angles it dilates. This is also evident from the deformation ch
acteristics plotted in Fig. 6, where the compactive and dilat
behaviors are illustrated by a monotonically decreasing volum
ric strain (Ėvol,0) and a monotonically rising volumetric strai
(Ėvol.0), respectively. A trend similar to that in Fig. 6 has be
reported in@4# for the case of two-dimensional discrete eleme
computations on an aggregate of circular discs under bi-a
loading. The results shown in Figs. 5 and 6 taken together h
the following physical interpretation: asfc increases, the aggre
gate deformation at steady-state collapse becomes predomi
by the rolling of particles past each other, and this results i
dilated structure with a co-ordination number approaching
minimum co-ordination number for a frictional isostatic packin

2.3 Influence of Particle Rotation Upon Macroscopic Re-
sponse. In order to explore the influence of particle rotatio
upon the macroscopic collapse response, the stress-strain c
for the cases where particle rotation is prevented are now c
pared to those where particle rotation is permitted, see Fig.
can be seen that the deviatoric strength increases by a fact
two to three when particle rotation is prevented. Also, prevent

Fig. 6 Deformation characteristics under axisymmetric com-
pression; the contact friction angles are: fcÄ4 deg, 14 deg, 24
deg, and 34 deg
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of particle rotation causes steady-state collapse to be attained
smaller strain level, and the overall response becomes smoo

The prevention of particle rotation can be interpreted as a k
matic constraint that increases the shear strength of the gran
assembly,@3,6,33#. In support of this line of reasoning, granula
materials comprising angular-shaped particles~which experience
restricted particle rotation due to interparticle locking! usually
have a higher macroscopic shear strength at a given confi
pressure than granular materials comprising round particles,@34#.

Figure 7 shows the relation between the contact friction an
fc and the macroscopic friction anglef, as computed by mapping
the responses in Fig. 4 atEdev55% ~5steady-state collapse! onto
the Drucker-Prager criterion

F5Sdev1
6 sinf

32sinf
Shydr50. (10)

Under axisymmetric compression, the Drucker-Prager criterion
flects the same macroscopic friction angle as the Mohr-Coulo
hexagonal surface,

F5Shydr sinf1
A3

3
SdevsinS u1

p

3 D1
Sdev

3
cosS u1

p

3 D sinf50

(11)

whereu is the angle of similarity,

cos 3u5
27

2

J3

~Sdev!3
with 0<u<

p

3
. (12)

Here, J3 is the third deviatoric stress invariant given byJ3

5S ik8 Sk j8 S j i8 /3. Under axisymmetric compression,u5p/3 and Eq.
~11! reduces to Eq.~10!. Figure 7 clearly shows that for a highe
contact friction angle the difference in macroscopic strength
unconstrained and constrained particle rotation becomes la
indicating that the mechanism of particle rolling becomes incre
ingly important. As discussed in Section 2.2., the macrosco
shear strength for the assembly with constrained particle rota
is expected to become infinitely large when the contact frict
approaches infinity. In contrast, for the case of unconstrained
ticle rotation, the macroscopic friction angle for the assembly w
unconstrained particle rotation asymptotes tof'24° with increas-
ing contact friction. In the no-sliding limit the particles are st
able to roll, and therefore the macroscopic friction angle rema
finite. It has already been suggested above that the macrosc

Fig. 7 Contact friction angle fc versus macroscopic friction
angle f and dilatancy angle c at steady-state collapse „Edev

Ä5%…
Transactions of the ASME
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shear strength is zero in the limit of vanishing contact fricti
angle. This anticipated trend at vanishing contact friction is d
ignated in Fig. 7 by the dashed lines.

The prevention of particle rotation also leads to an increas
the sliding contact fraction at collapse, see Fig. 5~a!. This can be
explained by the fact that prevention of particle rolling requir
more particle contacts to slide in order to attain the same leve
macroscopic deformation. Additionally, the prevention of parti
rotation yields a lower coordination number~Fig. 5~b!! and a
higher porosity~Fig. 5~c!! at steady-state collapse. Thus, the p
vention of particle rotation leads to a strongly dilatant mate
behavior, as depicted in Fig. 8. In Figs. 6 and 8, the ratio
volumetric strain rateĖvol to deviatoric strain rateĖdev at Edev

55% defines the steady-state macroscopic dilatancy anglec as-
sociated with the flow potentialG, where2

G5Sdev1
6 sinc

32sinc
Shydr. (13)

Note that the above Drucker-Prager flow potential in stress sp
equals the Drucker-Prager collapse criterion given by Eq.~10!
when the dilatancy anglec is replaced by the friction anglef. As
usual, the direction of plastic flow is obtained by taking the str
derivative of the flow potentialG. The dependence of the macro
scopic dilatancyc upon the contact friction anglefc has been
included in Fig. 7. It is clear that the macroscopic dilatancy an
is consistently less than the macroscopic friction angle, imply
‘‘nonassociated plastic flow.’’

2.4 Comparison of Discrete Element Simulations With
Triaxial Tests on an Aggregate of Steel Spheres.A set of tri-
axial tests on an aggregate of steel spheres has been perfo
recently by Davy and Fleck~private communication! in order to
explore experimentally the dependence of the steady-state m
scopic friction angle upon the contact friction angle of t
spheres. A circular cylindrical sample of 50 mm diameter by
mm height was constructed, using spheres of approximately
mm in diameter. The aspect ratio of the granular specimen
equals 1, and is equal to that of the discrete element model.
ratio of the sphere radius to the specimen diameter is 0.045.
though this relative particle size is somewhat bigger than that u
in the discrete element simulations (r /L50.025), from Figs. 2~a!
and~b! it is expected that in the range 0.025,r /L,0.05 the effect
of particle size on steady-state sample strength~or steady-state

2Although in the discrete element model the macroscopic strain rate is comp
of elastic and permanent components, at 5% deviatoric strain the elastic strain r
much smaller than the total strain rate. Hence, it is expected that the flow directi
not greatly in error when computed by using the values for the total strain rate

Fig. 8 Deformation characteristics under axisymmetric com-
pression; the contact friction angles are: fcÄ4 deg, 14 deg, 24
deg, and 34 deg. Constrained particle rotation.
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macroscopic friction angle! will be very small. The sample of
steel spheres was subjected to triaxial compression in three s
to investigate the influence of particle contact friction: copp
coated spheres~as-received state!, spheres lubricated with PTFE
~polytetrafluorethylene! spray, and braze-coated spheres. The
tial porosity of the samples was between 0.388 and 0.402, wh
is close to the initial porosity of the discrete element mod
~0.382!. The tests involved a measurement of the steady-s
macroscopic friction anglef by fitting the Mohr-Coulomb col-
lapse law, Eq.~11!, to the triaxial data, and a direct measureme
of the inter-particle friction between two steel spheres~which pro-
vides the contact friction anglefc). The triaxial tests follow the
method described in@35#, and were performed at a relatively low
confining pressure~at about 0.1 MPa! in order to obtain a particle
system that is close to the rigid-sphere limit.

The measured macroscopic and microscopic friction angles
plotted in Fig. 9, and are compared with the discrete elem
predictions where particle rotation is permitted, taken from Fig
The predicted response is in excellent agreement with the exp
mental results. Both the discrete element method and the ex
ments reveal that the macroscopic friction anglef exceeds the
contact friction anglefc for fc less than about 21°. Asfc in-
creases, the relative proportion of inter-particle rolling to slidi
increases, andf levels off in value.

2.5 Influence of Particle Redistribution Upon Macroscopic
Response. The effect of particle redistribution upon the macr
scopic stress level can be elucidated by successively subje
the discrete granular assembly in Fig. 1 to three different ki
matic conditions:~1! particle sliding and particle rotation are a
lowed to occur,~2! particle sliding is allowed to occur, but particl
rotation is prevented,~3! particle sliding is allowed to occur in
accordance with an affine deformation field, and particle rotat
is prevented. For the cases~1! and ~2!, the essential boundary
conditions are imposed onto the outer walls of the particle ass
bly, see Eq.~2!. In contrast, case~3! requires the translationa
velocity u̇i of all particles to be prescribed, according to

u̇i5Ėi j xj (14)

whereĖi j is the uniform, macroscopic strain rate andxj are the
coordinates of the particle center.

In the discrete element simulations, the contact friction an
equalsfc524 deg, the initial confining pressure isSconf522.5
31026Gpart and the particle radius isr 50.025L. Two extremes of

sed
te is
n is

Fig. 9 Contact friction angle fc versus macroscopic friction
angle f. DEM versus experimental results „triaxial tests on an
aggregate of steel spheres ….
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deformation path have been explored:volumetric deformation,
whereĖ115Ė225Ė33 ~andĖ125Ė235Ė3150) anddeviatoric de-

formation, where Ė11521/2Ė22521/2Ė33 ~and Ė125Ė235Ė31
50). For the volumetric deformation path, Fig. 10~a! sketches the
volumetric strain versus the normalized hydrostatic stress. I
clear that the suppression of particle rotation hardly alters
macroscopic stress-strain curve. However, the introduction o
affine deformation field gives rise to noticeable stiffening. For
deviatoric deformation path, the effects of particle rotation a
particle rearrangement upon the macroscopic stress level are
pronounced, see Fig. 10~b!. The effect of particle rotation appear
to strongly influence the stress magnitude, which is consis
with the result in Fig. 4. Also, the large stress increase induced
the affine deformation field suggests that substantial particle r
rangements occur when particle rotation is permitted.

For the deviatoric deformation path, atEdev55% steady-state
collapse has been reached, and the macroscopic strength
2Sdev/Shydr50.94, 1.99, and 2.74 for the cases where parti
rotation is permitted, particle rotation is prevented, and affine
formation is applied, respectively. Hence, the assumption of ‘
fine deformation,’’ also known as theVoigt approximation, is not
very realistic when homogenizing the mechanical behavior of
assembly of rotating particles; it would lead here to an overe
mation of the macroscopic strength by a factor of 2.74/0.9452.9.

2.6 Collapse Contour in Deviatoric Plane. The collapse
contour in the deviatoric plane of the principal stress space

Fig. 10 Influence of particle rotation and particle rearrange-
ment „fcÄ24 deg … for prescribed deformation paths. „a… Volu-
metric deformation „Ė11ÄĖ22ÄĖ33…. „b… Deviatoric deformation
„Ė11ÄÀ1Õ2Ė22ÄÀ1Õ2Ė33….
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computed by means oftrue triaxial tests, wherein the three prin-
cipal stresses depicted in Fig. 1 are varied independently.
keeping the hydrostatic pressure, Eq.~5~b!!, at a constant value, a
full range of radial deviatoric stress paths is imposed, as par
eterized by the ratio

b5
S22S3

S12S3
with 0,b,1. (15)

In Eq. ~15!, b50 corresponds to triaxial compression~as dis-
cussed in the previous sections!, while b51 corresponds to tri-
axial extension. In the discrete element simulations, the str
controlled loading paths, Eq.~15!, are traced by invoking the
servo-control algorithm, Eq.~3!. Again, a cuboidal volume is ran
domly filled with 9167 spherical particles each of radiusr
50.025L. The contact friction angle is assigned the valuefc524
deg and the confining pressure equalsSconf522.531026Gpart.

The DEM collapse contours depicted in Fig. 11 have been co
posed by computing the stress states that correspond to a d
toric strain Edev51%. The axes S18/S

dev,tc, S28/S
dev,tc and

S38/S
dev,tc represent the three principal deviatoric stresses norm

ized by the von Mises stress under triaxial compression,Sdev,tc,
taken atEdev51%. Figure 11~a! illustrates that the prevention o
particle rotation provides the collapse contour with somew
sharper corners. Further, both for constrained and unconstra
particle rotation the shear strength in triaxial compression
higher than in triaxial extension. This behavior is typical for no

Fig. 11 Collapse contour in deviatoric plane „contact friction
angle fcÄ24 deg …. „a… DEM with unconstrained and con-
strained particle rotation. „b… DEM versus Lade-Duncan model,
Mohr-Coulomb model and Drucker-Prager model „macroscopic
friction angle fÄ19 deg ….
Transactions of the ASME
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cohesive granular materials such as sand, as observed exper
tally, @10,11#. In order to specify the collapse characteristics
sand in the deviatoric plane, Lade and Duncan have propose
following phenomenological collapse criterion,@36#,

F5I 1
32k1I 350 (16)

whereI 1 , I 3 are the stress invariants

I 153Shydr5Skk (17)

I 35
1

3
S i j S jkSki2

1

2
SkkS i j S j i 1

1

6
~Skk!

3

andk1 is a dimensionless strength parameter, which, for a co
sionless granular material, can be explicitly formulated as,@37#,

k15
@a~11b!1~22b!#3

ba21~12b!a
. (18)

In the above expression, the material parametera is related to the
macroscopic friction anglef in axisymmetric compression

a5
11sinf

12sinf
(19)

and b characterizes the radial stress path applied, see Eq.~15!.
Thornton@8# has recently demonstrated close agreement betw
the Lade-Duncan model and a collapse contour computed b
discrete element model for a polydisperse packing of spheres~i.e.,
a packing of spheres with various sizes!. This finding is supported
by the result in Fig. 11~b!, which depicts the collapse contour fo
the monodisperse packing with unconstrained particle rotat
taken from Fig. 11~a!, together with the collapse contours o
Lade-Duncan, Eq.~16!, Mohr-Coulomb, Eq.~11!, and Drucker-
Prager, Eq.~10!. It is noted that forb50 Eqs.~16! and ~10! are
reduced to Eq.~11! for any choice off. Here, the macroscopic
friction angle is prescribed asf519 deg, in order to reproduce th
DEM simulations at triaxial compression. This value is a lit
lower than the steady-state friction angle at triaxial compress
f522 deg~see Fig. 7!, indicating that atEdev51% the granular
sample is close to steady-state collapse. As shown in Fig. 11~b!,
for stress paths other than axisymmetric compression, the L
Duncan model is in much better agreement with the discrete
ment results than the Mohr-Coulomb and Drucker-Prager mod

3 Concluding Remarks
The three-dimensional discrete element simulations discu

in this paper reveal the effect of the particle contact friction an
upon the degree of local particle rearrangement and upon the
roscopic strength. During collapse, the effect of particle rearran
ment on the stress level is substantial, especially when the gr
lar system suffers deviatoric deformations. When the colla
mechanism has reached a steady-state, the coordination num
the particle structure closely corresponds to the minimum coo
nation number of an isostatic packing. When the particles in
granular assembly are subjected to an affine deformation fiel
combination with constrained particle rotation, the mechanism
particle rearrangement is fully suppressed, leading to a cons
able increase of the macroscopic stress. Accordingly, the assu
tion of ‘‘affine deformation’’~the Voigt approximation!, which is
often adopted in the homogenization of granular materials, is
from realistic when deriving continuum models for granular a
semblies with rotating particles. When only particle rotation
prevented in the discrete model, the stress level at a specific s
may still be considerably higher than for the case of unconstra
particle rotation, with the difference depending strongly on
magnitude of the particle contact friction. Preventing particle
tation also endows the collapse contour with sharper corners,
plying an increase in the ratio of the shear strength under tria
compression to the shear strength under triaxial extension.
Journal of Applied Mechanics
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On Timoshenko Beams of
Rectangular Cross-Section
It was recently shown that the shear coefficient for a rectangular Timoshenko bea
highly dependent on the aspect ratio of the beam. This research investigates the re
for that behavior by comparison of the Timoshenko beam solution with a new th
dimensional solution for a simply supported beam. The new solution is a series so
that converges to any desired accuracy. Comparisons are also made to both elem
and Mindlin plates. The Mindlin plate solution is in excellent agreement with the th
dimensional solution for the simply supported case, and is used as a basis of comp
for a free-free beam. It is found that a shear coefficient which would cause matching
three-dimensional and Mindlin solutions would have to be a function of the wave le
as well as the aspect ratio. Physical explanations are given for the high dependen
aspect ratio and for the dependence on wave length.@DOI: 10.1115/1.1751186#
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Introduction

In a recent paper, Hutchinson@1# derived a general expressio
for the shear coefficient in Timoshenko beams. In a discussio
that paper Stephen@2# pointed out that he had derived the sam
expression for the shear coefficient in an entirely different way
1980, @3#. This particular shear coefficient will be referred to
the S-H coefficient in this paper. In his discussion Stephen no
‘‘A further very interesting feature of@1#, Figs. 3 and 4, is the
possibility of the S-H coefficient taking on negative value f
combination of large width-to-depth ratios and for large Poisso
ratio. The effect of a negative coefficient would be to stiffen t
structure, leading to a natural frequency higher than that predi
by Euler-Bernoulli theory. Nevertheless, the physical implicat
of a possible negative coefficient requires further consideratio
The purpose of this paper is to further investigate this interes
phenomenon.

In Ref. @1#, Timoshenko beam theory, using the S-H coefficie
was compared to a three-dimensional series solution of the
erning equations for the completely free beam. The thr
dimensional solution was described in Hutchinson and Zillm
@4,5#. Because of limitations on the number of terms required
the series, the convergence was not assured for the range of
needed for meaningful comparison. The limitation was caused
the size of the characteristic matrix. The order of the character
matrix for the three-dimensional problem wasNxNy1NyNz

1NzNx , whereNx , Ny , andNz are the number of terms in thex,
y, andz directions. The number of terms in each direction must
kept approximately proportional to the dimensions in the cor
sponding directions. For a compact body, however, convergen
no problem. A convergent three-dimensional solution for
13132 rectangular parallelepiped is used in this paper for co
parison.

One of the comparisons in Ref.@1# was to the work of Armena`-
kas et al.@6# for the vibration of infinitely long circular cylindrical
shells. Theirn51 case corresponds to the beam vibrations
simply supported beams. The frequencies from that work co
spond almost exactly with the frequencies found using Timo

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
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enko beam theory and the S-H coefficient. Because of that c
correspondence, it was decided to look at the simply suppo
rectangular beam.

The only easy three-dimensional solution for the simply su
ported rectangular beam is for the plane stress case develop
Ref. @5#. It was found, however, that a new series solution co
be developed for the simply supported case for which the orde
the matrix would beNx1Ny . This solution could then be easil
made to converge to any required accuracy and provides an
cellent basis of comparison. Both the elementary plate and
Mindlin plate solutions were evaluated for the case of simple s
ports on the ends and free along the sides and compared with
three-dimensional solution and the Timoshenko beam solution
was found that the Mindlin and three-dimensional solution agr
very well so that the Mindlin plate solution could be used as
basis of comparison for beams with other end support conditio

The case of a beam with free ends was also investigated
compared to the elementary and Mindlin plate solutions. The
ementary and Mindlin plate solutions for the completely free pl
are more complicated than that of the plate simply supported
two opposite edges. A solution for the completely free Mind
plate was presented by Gorman and Ding@7# in 1996. They used
the method of superposition. Rather than try to duplicate th
solution process I decided to develop a new series solution.
superposition method and the series solution method are basi
the same. They both satisfy the differential equations identica
some of the boundary conditions identically and the remain
boundary conditions approximately. The approximation of t
boundary conditions becomes better as more terms are chos
the series. The differences between the superposition and s
method is more in the derivation process than in the final resu

In all comparisons it was found that the Timoshenko beam
lution with the S-H coefficient gave good results only over limit
ranges. An S-H coefficient for which the beam would provide
good match with the more accurate solutions would have to b
function of the wave length as well as the aspect ratio. To st
this phenomenon, both displacement and stress resultant m
shapes were investigated for the simply supported beam.

Beam Solutions
The Timoshenko beam equations and solutions, as well as

elementary Euler-Bernoulli beam equations and their solutions
well known. One concise reference which gives the character
equations for a number of boundary conditions is Flu¨gge@8#. The
S-H coefficient,k, for a beam of rectangular cross-section is
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k52
2~11n!

C1n~12W2!
(1)

where n is Poisson’s ratio,W is the width-to-depth ratio of the
beam, andC is

C522.423n1nW21(
n51

`
36n2W4@np2W tanh~np/W!#

~np!5~11n!
.

(2)

The Timoshenko beam equations solved with the above S-H
efficient is referred to as the Timoshenko solution in this pape

Three-Dimensional Solution
Table 1 is a subset of the solution forms derived in Ref.@4#.

Sinusoidal motion is assumed so that each term is considere
multiplied by sinvt. In the table thes andc in parentheses refer to
the sine and cosine, respectively, with the argumentax for the
first set in parentheses in column 1,by for the second set in
column 1, anddz for the third set in column 1,āx for the first set
in columns 2, 3, and 4,b̄y for the second set in columns 2, 3, an
4, andd̄z for the third set in columns 2, 3, and 4. The relatio
between the wave numbers are

a21b21d25v2/c1
2 (3)

ā21b̄21 d̄25v2/c2
2 (4)

wherev is the natural frequency, andc1 andc2 are the dilatational
and shear wave velocities, respectively. The constantK appearing
in Table 1 isv2l/c1

2. The constantsl andm are Lame’s constants
The physical dimensions and coordinate system used in

section is shown in Fig. 1. The width of the beam is 2a. The depth
of the beam is 2b, and the length of the beam is 2c. To satisfy
simply supported boundary conditions at the endsz56c set,

d5 d̄5p/2c. (5)

Note thatp/2c could be multiplied by an integer, but it is equal
valid to consider 2c as the wave lengthL. The boundary condi-
tions on the sides of the beam are

txy~a,y,z!50 (6)

txz~a,y,z!50 (7)

txy~x,b,z!50 (8)

tyz~x,b,z!50 (9)

Table 1 Solution forms for the three-dimensional elasticity
equations in Cartesian coordinates

1 2 3 4

u 2a(s)(s)(c) 2b̄(s)(s)(c) 2 d̄(s)(s)(c) 0
v b(c)(c)(c) 2ā(c)(c)(c) 0 d̄(c)(c)(c)
w 2d(c)(s)(s) 0 ā(c)(s)(s) b̄(c)(s)(s)
sx 2(K12ma2)

(c)(s)(c)
22māb̄
(c)(s)(c)

22mād̄
(c)(s)(c)

0

sy 2(K12mb2)
(c)(s)(c)

2māb̄
(c)(s)(c)

0 22mb̄d̄
(c)(s)(c)

sz 2(K12md2)
(c)(s)(c)

0 2mād̄
(c)(s)(c)

2mb̄d̄
(c)(s)(c)

txy 22mab
(s)(c)(c)

m(ā22b̄2)
(s)(c)(c)

2mb̄d̄
(s)(c)(c)

2mād̄
(s)(c)(c)

tyz 22mbd
(c)(c)(s)

mād̄
(c)(c)(s)

māb̄
(c)(c)(s)

m(b̄22 d̄2)
(c)(c)(s)

tzx 2mad
(s)(s)(s)

mb̄d̄
(s)(s)(s)

m( d̄22ā2)
(s)(s)(s)

māb̄
(s)(s)(s)
360 Õ Vol. 71, MAY 2004
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sx~a,y,z!50 (10)

sy~x,b,z!50. (11)

Two series are formed from linear combinations of the four so
tion forms in Table 1. For example,

sx5(
n51

Ny

An@a1C11a2C21a3C31a4C4#1(
n51

Nx

Bn@b1C11b2C2

1b3C31b4C4# (12)

whereC1 , C2 , C3 , andC4 refer to the expressions in columns
2, 3, and 4 of Table 1, respectively. Thea’s andb’s are chosen so
as to partially satisfy the boundary conditions.Nx andNy refer to
the number of terms in thex andy directions, respectively. With
exception of theC’s, expressions for all displacements an
stresses are identical to Eq.~12!. For theA series choose

b5b̄5
~2n21!p

2b
n51,2,3 . . .Ny . (13)

This choice makes theA series satisfy boundary conditions~8!
and ~9!. For theB series choose,

a5ā5
~n21!p

a
n51,2,3 . . .Nx . (14)

This choice makes theB series satisfy boundary conditions~6!
and ~7!. Choosing thea’s andb’s as follows, completes identica
satisfaction of boundary conditions~6!, ~7!, ~8!, and~9!.

a15~b21d22ā2!/a sinaa (15)

a2522b/sināa (16)

a3522d/sināa (17)

a450 (18)

b15~d21a22b̄2!/b cosbb (19)

b252a/cosb̄b (20)

b350 (21)

b4522d/cosb̄b (22)

To keep track of the wave numbers, theb’s in Eq. ~13! will be
subscripted with anA and thea’s in Eq. ~14! will be subscripted
with a B. Similarly the a’s and b’s in Eqs. ~15! to ~18! will be
subscripted with anA and thea’s andb’s in Eqs.~19! to ~22! will
be subscripted with aB. Boundary condition~10! is satisfied by
setting

E
0

b

sx~a,y!sinbAnydy50. (23)

Fig. 1 Coordinates and dimensions for the beam
Transactions of the ASME
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Evaluation of this integral gives

@M11#$A%1@M12#$B%50 (24)

where M11 is a diagonal matrix of orderny . The coefficients on
the diagonal are

M11nn5
b

2
@2~K12maAn

2 !~bAn
2 1d22āAn

2 !/aAn tanaAna

14māAn
2 ~bAn

2 1d2!/āAn tanāAna#

where n51,2,3 . . .Ny . (25)

The matrixM12 has the following coefficients:

M12nm5@2~K22maBm
2 !~d21aBm

2 2b̄Bm
2 !/~bAn

2 2bBm
2 !

24maBm
2 b̄Bm

2 /

~bAn
2 2b̄Bm

2 !#cosaBma sinbAnb

where n51,2,3, . . .Ny and m51,2,3, . . .Nx .

(26)

Boundary condition~11! is satisfied by setting

E
0

a

sy~x,b!cosaBnxdx50. (27)

Evaluation of this integral gives

@M21#$A%1@M22#$B%50 (28)

whereM22 is a diagonal matrix of orderNx . The coefficients on
the diagonal are

M22mm5S a

2D *
@2~K12mbBm

2 !bBm tanbBmb~d21aBm
2 2bBm

2 !/

bBm
2 14m~aBm

2 1d2!b̄Bm tanb̄Bmb#

where m51,2,3 . . .Nx . (29)

The asterisk ona/2 means that form greater than 1 the quantity i
a/2, whereas,m51 is a special case and for that casea must be
substituted fora/2. The matrixM21 has the following coefficients

M21mn5@~K22mbAn
2 !~d21bAn

2 2āAn
2 !/~aBm

2 2aAn
2 !

14mbAn
2 āAn

2 /

~aBm
2 2āAn

2 !#cosaBma sinbAnb

where n51,2,3, . . .Ny

and m51,2,3, . . .Nx . (30)

Equations~24! and~28! can be written as a single matrix equ
tion as follows:

FM11 M12

M21 M22
G HA

BJ 5 H0
0J . (31)

It can be seen from Eqs.~3! and~4! thata2, b2, ā2, andb̄2 have
the possibility of taking on negative values. For the A seriesb and
b̄ are positive soaA

2 and āA
2 can be negative, likewise, for the B

seriesa andā are positive sobB
2 andb̄B

2 can be negative. In Eqs
~25!, ~26!, ~29!, and~30! the only place where any of the value
aA , āA , bB , or b̄B occur in the nonsquared form, they are in t
form aAn tanaAna which is real and is computed a
2uaAnutanh(uaAnua).

A dimensionless frequency parameter is introduced as the
quency divided by the shear velocity times the depth of the be
(2b). This frequency parameter will be referred to as the f
quency in the remainder of this paper. The only parameters of
problem are the width-to-depth ratio, the length-to-depth ratio
Journal of Applied Mechanics
-

.
s
e

s

fre-
am
e-
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Poisson’s ratio. To solve Eq.~31!, values of the width-to-depth
ratio, the length-to-depth ratio, and Poisson’s ratio are assume
starting value of the frequency is assumed and frequency va
are stepped along until a sign change in the determinant of
matrix @M# is found. The interval is then halved repeatedly un
the desired accuracy is obtained.

Plate Solutions
The elementary plate has been treated in a number of books

papers. The most extensive compendium of solutions is in
monograph by Leissa@9#. The elementary SS-F-SS-F plate
treated by Leissa starting on p. 53. Because of the completene
that work it is not necessary to repeat the equations here. Le
also treats the SS-F-SS-F Mindlin Plate starting on p. 318 us
the 1956 work of Mindlin et al.@10#. There is a drawback with the
equation development in the 1956 Mindlin et al. paper. In t
paper, the authors assume a shear coefficient ofp2/12 and build
that into their Eqs.~3!, @10#. The use of any other shear coefficie
in Eqs.~3!, @10#, will produce incorrect results. This drawback
easily remedied by going back to Mindlin’s 1951 paper,@11#.
Using the expressions ford1

2 andd2
2 from Mindlin’s Eq. ~59!, @11#,

and s1 and s2 from Eq. ~60!, @11#, andv2 from Eq. ~54!, @11#,
will clear up the problem. The remainder of the Mindlin et a
1956 paper clearly shows how the solution is accomplished
will not be repeated here.

The choice of a best shear coefficient in the Mindlin theory h
also received some attention. In his 1951 paper Mindlin@11# de-
termined the shear coefficient in two different ways. One way w
matching the thickness shear modes, which led to the coeffic
p2/12. The other way was matching the three-dimensional so
tion for straight crested flexural waves at short wave lengths,
sulting in a shear coefficient that is a function of Poisson’s ra
and is found by solving a cubic equation. In a 1984 paper, Hut
inson@12# found that by matching the solution for straight crest
flexural waves at long wave lengths a shear coefficient of 5/~62n!
could be found. In Ref.@12# this shear coefficient was found be
for the lower frequency modes and so is the one used in this pa
A brief numerical check also showed that this coefficient provid
the closest match to the three-dimensional theory develope
this paper. This coefficient was also suggested in the work
Witrick @13# in 1986 and Stephen@14# in 1997. Both Mindlin@11#
and Stephen@14# pointed out that for thickness shear modes
coefficient ofp2/12 provides accurate results, but for the mod
considered in this paper the coefficient of 5/~62n! was clearly
best. There is an interesting connection between the plate co
cient 5/~62n! and the S-H coefficient given in Eq.~1!. If one
considers the value of W in Eqs.~1! and~2! approaching zero, one
gets k55~11n!/~615n!. This is the plane stress solution. If on
considers the conversion to plane strain by the appropriate su
tution of Poisson’s ratio one gets 5/~62n!.

For the completely free Mindlin plate solution a new seri
solution was developed. This series solution is very similar to
method used by Gorman and Ding@7#. It uses solutions of the
governing equations. It satisfies some of the boundary condit
exactly and approximates the rest. The superposition metho
Gorman and Ding accomplishes the same thing but in a diffe
manner. For the plate solutions it was decided to use the s
coordinate system as Mindlin rather than the beam coordin
system shown in Fig. 1. In the Mindlin coordinate systemx andy
are in the plane of the plate and z is out of the plate formin
right handed orthogonal coordinate system. In this coordinate
tem x is the widthy is the length andz is the depth of the corre-
sponding beam.

To carry out the series solution, solutions of the different
equation are found. The three types of solution forms are tabul
in Table 2. In this table only solution forms which are symmet
in both the length-y and width-x coordinates are shown. To matc
beam solutions, only the solutions which are symmetric in
width coordinate are needed. Solutions symmetric iny account for
MAY 2004, Vol. 71 Õ 361
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Table 2 Solution forms for Mindlin plates in Cartesian coordinates

Form 1 Form 2 Form 3 Multiplier

w 1 1 0 cos(jx)cos(hy)
cx 2(s121)j1 2(s221)j2 1/j3 sin(jx)cos(hy)
cy 2(s121)h1 2(s221)h2 21/n3 cos(jx)sin(hy)
Mx /D 2(s121)(j1

22nh1
2) 2(s221)(h2

22nj2
2) 12n cos(jx)cos(hy)

M y /D 2(s121)(h1
22nj1

2) (s221)(h2
22nj2

2) 2~12n! cos(jx)cos(hy)
M yx /D(12n) (s121)j1h1 (s221)j2h2 (j3

22h3
2)/2j3h3

sin(jx)sin(hy)
Qx /k2Gh 2s1j1 2s2j2 1/j3 sin(jx)cos(hy)
Qy /k2Gh 2s1h1 2s2h2 21/h3 cos(jx)sin(hy)
t
so

e
ed

eir

fy

e

modes 1, 3,5 . . . . For modes 2, 4,6 . . . slight modifications
must be made to the table. The multiplier in the last column of
table applies to all three forms, thus for example, the displacem
w for Form 2 is cos(j2x)cos(h2y). Other notation follows that of
Mindlin @8# with one exception—what Mindlin callsv, I will call
d3

2, and I will introduce a dimensionless frequencyv. The nota-
tion is as follows:

G-shear modulus

h-plate thickness

n5Poisson’s ratio

D-plate stiffness D5Gh3/6~12v !

k2-Shear coefficient

r-density

p-natural frequency

v-dimensionless frequencyv5rp2h/D

Mindlin’s values d1
2, d2

2, d3
2, s1 , and s2 can be expressed in

terms of the dimensionless frequency as

d1
25

3v2~12n!

h2 F 1

12
1

1

6~12n!k2

1AS 1

12
2

1

6~12n!k2D 2

1
4

6~12n!v2G (32)

d2
25

3v2~12n!

h2 F 1

12
1

1

6~12n!k2

2AS 1

12
2

1

6~12n!k2D 2

1
4

6~12n!v2G (33)

d3
25

v2212k2

h2
(34)

s15
2d2

2h2

~12n!~v2212k2!
(35)

s25
2d1

2h2

~12n!~v2212k2!
. (36)

The relationship betweenj, h andd is

j1
21h1

25d1
2 (37)

j2
21h2

25d2
2 (38)

j3
21h3

25d3
2. (39)
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Use is made of the symmetry and antisymmetry in the problem
the boundary conditions only need to be considered at positivx
and positivey. The boundary conditions which must be satisfi
are

Mx~a,y!50 M y~x,b!50 (40)

M yx~a,y!50 M yx~x,b!50 (41)

Qx~a,y!50 Qy~x,b!50. (42)

Solutions are formed in two series which are called theA series
and theB series. The general form of these series is

f ~x,y!5(
n51

Nx

An@a1ng1n1a2ng2n1a3ng3n#

1(
n51

Ny

Bn@b1ng1n1b2ng2n1b3ng3n# (43)

whereNx andNy are the number of terms in thex andy directions
respectively.A, B, a, andb are arbitrary constants. The functionf
represents any of the functions in the left column of Table 1~i.e.,
displacement, slopes, moments, or shears!. The g1 , g2 , g3 , rep-
resent the functions listed in the columns 1, 2, and 3 with th
appropriate multipliers. Thus, for the displacementw, g1 would be
cos(j1nx)cos(n1nx), for the slope cx , g1 would be 2(s1
21)j1n sin(j1nx)cos(h1ny) etc.

Choosing

jAn5j1An5j2An5j3An5
~n21!p

a
n51,2,3 . . .Nx (44)

makes theA series satisfy the boundary conditionsM yx(a,y)50
andQx(a,y)50. Choosing

hBn5h1Bn5h2Bn5h3Bn5
~n21!p

b
n51,2,3 . . .Ny

(45)

makes theB series satisfy the boundary conditionsM yx(x,b)50
andQy(x,b)50. The coefficients can now be adjusted to satis
M yx(a,y)50 andQx(a,y)50 in the B series andM yx(x,b)50
andQy(x,b)50 in theA series. TheA series representation of th
twisting moment is

M yx~x,b!5(
1

Nx

An@a1nT1n1a2nT2n1a3nT3n#
1

jn
sinjnx

(46)

where

T15~12n!~s121!jA
2hA1 sin~hA1b! (47)

T25~12n!~s221!jA
2hA2 sin~hA2b! (48)

T35~12n!~jA
22hA3

2 !hA3 sin~hA3b!/2hA3
2 . (49)

The A series representation of the shearQ is
Transactions of the ASME
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Qy~x,b!5(
1

Nx

An@a1nV1n1a2nV2n1a3nV3n#cosjnx (50)

where

V152s1hA1 sin~hA1b! (51)

V252s2hA2 sin~hA2b! (52)

V352hA3 sin~hA3b!/hA3
2 . (53)

The quantities in brackets in Eqs.~46! and~50! must be zero. This
is accomplished by letting

a15T2V32T3V2 (54)

a25T3V12T1V3 (55)

a35T1V22T2V1 . (56)

The same process is carried out to determine the valuesb1 , b2 ,
andb3 so thatM yx(a,y)50 andQx(a,y)50. The only remaining
boundary conditions are on the bending moments and those
be satisfied by orthogonality. That is by setting

E
0

a

M y~x,b!cosS ~m21!px

a Ddx50 m51,2,3 . . .Nx (57)

E
0

b

Mx~a,y!cosS ~m21!py

b Ddy50 m51,2,3 . . .Ny .

(58)

Evaluation of the integral in Eq.~57! leads to the matrix equation

@C11#$A%1@C12#$B%5$0% (59)

where the matrix@C11# is a diagonal matrix whose terms are

C11n5~a/2!* @2a1n~s121!~hA1n
2 1njAn

2 !cos~hA1nb!

2a2n~s221!~hA2n
2 1njAn

2 !cos~hA2nb!

2a3n~12n!cos~hA3nb!# (60)

where (a/2)* equals a for n51 and a/2 for n.1 and n
51,2,3 . . .Nx . The matrix@C12# is a full matrix whose coeffi-
cients are

C12mn5@2b1n~s121!~hBn
2 1njB1n

2 !jB1n sin~jB1na!/

~jB1n
2 2jAm

2 !2b2n~s221!~hBn
2 1njB2n

2 !jB2n sin~jB2na!/

~jB2n
2 2jAm

2 !2b3n~12n!jB3n sin~jB3na!/

~jB3n
2 2jAm

2 !#cos~jAma!cos~hBnb! (61)

wherem51,2,3 . . .Nx n51,2,3 . . .Ny .
Evaluation of the integral in Eq.~58! leads to the matrix equa

tion

@C21#$A%1@C22#$B%5$0% (62)

where the matrix@C22# is a diagonal matrix whose terms are

C22n5~b/2!* @2b1n~s121!~jB1n
2 1nhBn

2 !cos~jB1na!

2b2n~s221!~jB2n
2 1nhBn

2 !cos~jB2na!

2b3n~12n!cos~jB3na!# (62)

where (b/2)* equals b for n51 and b/2 for n.1 and n
51,2,3 . . .Nx . The matrix@C12# is a full matrix whose coeffi-
cients are

C21mn5@2a1n~s121!~jAn
2 1nhA1n

2 !hA1n sin~hA1na!/

~hA1n
2 2hBm

2 !2a2n~s221!

3~jAn
2 1nhA2n

2 !hA2n sin~hA2na!/
Journal of Applied Mechanics
will

~hA2n
2 2hBm

2 !2a3n~12n!hA3n sin~hA3nb!/

~hA3n
2 2hBm

2 !#cos~jAna!cos~hBnb! (64)

wherem51,2,3 . . .Ny n51,2,3 . . .Nx .
Combining Eqs.~30! and ~33! gives

FC11 C12

C21 C22
G HA

BJ 5 H0
0J . (65)

The matrixC is a square matrix of orderNx1Ny . The entire
problem can be made dimensionless just by setting the thick
h51. The lengthsa andb are then the ratios ofa andb to h. The
only parameters in the problem area, b, n, k2 and v. Natural
frequencies are found by assuming values ofa, b, n, andk2 then
searching for the values ofv which make the determinant ofC go
to zero. Mode shapes are found by solving for the relative val
of A andB after the natural frequency is established.

It should be noted from Eqs.~37!–~39! that j2 andh2 can be
negative. Some authors~e.g., Refs.@7# and@10#! talk about divid-
ing into regions because of this, however, the problem can
handled more simply. It can be seen that the only placesj andh
appear in a nonsquared form in any of the foregoing equatio
they appear in the form cos(ja) or in the formj sin(ja) wherej
can stand for eitherj or h anda can stand for eithera or b. Both
of these forms are real. Ifj2 is positive they are calculated a
cos(ja) and j sin(ja). If j2 is negative they are calculated a
cosh(ujua) and 2ujusinh(ujua), respectively. It also is desirable t
divide the hyperbolic functions by exp(ja) to prevent computer
overflow.

The elementary plate solutions were found by simply letting
thickness of the plate go very small compared with the other
mensions, solving using the above Mindlin plate formulation a
then using an appropriate scaling factor on the frequency.
accuracy of this approximation was checked by comparing
solutions in Gorman and Ding@7# and in Leissa@9#.

Results for Simply Supported Comparison
Convergence checks were made on the three-dimensional

tion. For a square beam, it was found that by using five term
each series, the frequency was good to about four significant
ures. By using 100 terms in each series the frequency was goo
about eight significant figures. As in my previous experience w
these series solutions, it was found best to choose a numbe
terms in each of the series roughly proportional to the dimensi
in those directions. In keeping with this concept, for all numeri
results reported, I choose 100 terms in the shortest direction a
correspondingly larger number of terms in the long direction. F
example, for a beam with a width-to-depth ratio of 10, I took 1
terms in they ~depth! direction and 1000 terms in thex ~width!
direction.

In Fig. 2, the values of a shear coefficient reciprocal, wh
would make the Timoshenko beam theory match the thr
dimensional solution, are shown as dashed lines. The solid lin
the S-H coefficient reciprocal plotted as a function of the wid
to-depth ratio. The numbers on the dashed lines indicate
length-to-depth ratio. It can be seen that when the width-to-de
ratio is less than 2 the match between the required coefficient
the S-H coefficient is very good for any wave length. The ma
for greater values of width-to-depth ratios is only good for lo
wave lengths. If the length-to-width ratio is greater than 5 t
required coefficient matches the S-H coefficient relatively wel

A perhaps better comparison is made with the natural frequ
cies in Figs. 3 through 5. These figures show the variation
frequency with the width-to-depth ratio for length-to-depth rati
of 10, 20, and 40, respectively. The figures show the frequen
as determined by the three-dimensional solution~3D!, the Mindlin
plate solution~M!, the Timoshenko beam solution~TB!, the el-
ementary plate solution~EP!, and the elementary beam solutio
~EB!. The three-dimensional and Mindlin solution plotted as e
MAY 2004, Vol. 71 Õ 363
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sentially the same curve and are labeled~3D-M!. Tabulated results
are also given for selected values in Table 3. By comparing Fi
to Figs. 3 through 5 it can be seen that in the regions where
required shear coefficient matches the S-H coefficient, the
quencies for the Timoshenko beam match that of the th
dimensional solution and the Mindlin plate solution. In Figs.
through 5 it can be seen that the frequency does in fact bec
higher than the frequency predicted by the Euler-Bernoulli be
theory as the width-to-depth ratio increases. These results ar
for a Poisson’s ratio of 0.3. For a higher Poisson’s ratio

Fig. 2 Shear coefficient reciprocal versus width-to-depth ratio.
S-H coefficient. Coefficients which match three-

dimensional solutions for length-to-depth ratios of 1, 10, 20,
and 40. For a simply supported beam.

Fig. 3 Frequency versus width-to-depth ratio, for a length-to-
depth ratio of 10 and Poisson’s ratio of 0.3, for the five solution
methods considered. For a simply supported beam.

Fig. 4 Frequency versus width-to-depth ratio, for a length-to-
depth ratio of 20 and Poisson’s ratio of 0.3, for the five solution
methods considered. For a simply supported beam.
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changes in Figs. 2 through 5 would all be greater, and conver
as Poisson’s ratio approaches zero all changes disappear.

One very interesting result which is evident in Figs. 3 throug
is that the elementary plate solution shows a frequency varia
with the width-to-depth ratio that mimics the frequency variati
for the three-dimensional solution. The elementary plate formu
tion does not allow for any shear deformation or rotary inert
This leads to the conclusion that the large variation of freque
with the width-to depth ratio is not brought about by the prese
of shear deformation and rotary inertia, but rather by plate act
There are several things occurring in the plate that aren’t usu
accounted for in beam theory. One, is the effect of the variation
the displacementv ~y direction! as a function of the width coor-
dinatex on the inertia. This effect was accounted for in Ref.@1# by
assuming full anticlastic curvature and leads to increased ine
and hence a lowering effect on the frequency. Another plate ef
is the twisting effect which produces the twisting moment. Th
effect was accounted for in Ref.@1# by the assumption of the shea
stress distribution found from the three-dimensional solution
the tip loaded cantilever. This assumption gave shear stressetxz
as well astyz . It is the txz stresses that produce the resulta
twisting moment in the plate. This twisting produces a stiffeni
effect and hence increases the frequency. The combinatio
these plate effects leads to a rise in the frequency with an incr
in the width-to-depth ratio. The plate effects are the main caus
the frequency variation with the width-to-depth ratio. The deriv
tion of the S-H coefficient by Stephen@3# is based on a three
dimensional solution and, so, also contains the plate effects.

The plate effects also lead to an understanding of the rea
for the divergence of the Timoshenko beam equations from
three-dimensional solution for large width-to-depth ratios a
short wave lengths. Both Refs.@1# and @3# made use of three-
dimensional static solutions which were applicable to long bea

Fig. 5 Frequency versus width-to-depth ratio, for a length-to-
depth ratio of 40 and Poisson’s ratio of 0.3, for the five solution
methods considered. For a simply supported beam.

Table 3 Frequencies for the simply supported beam for se-
lected length-to-depth „LÕD… and width-to-depth „W… ratios com-
puted by the methods listed below. For the Mindlin plate a
shear coefficient of 5 Õ„6-n… was used. For the Timoshenko beam
the S-H coefficient was used. Poisson’s ratio was 0.3.

L/D W
3-D

Solution
Mindlin

Plate
Timoshenko.

Beam
Elementary

Beam
Elementary

Plate

1 2 2.3925141 2.3926823 2.4201901 4.5940508 4.75079
1 10 2.4195486 2.4153869 4.7318781 4.5940508 4.79903

10 2 0.0452410 0.0452478 0.0452420 0.0459405 0.04603
10 10 0.0460918 0.0460982 0.0473894 0.0459405 0.04699
20 2 0.0114405 0.0114410 0.0114405 0.0114851 0.01149
20 10 0.0115377 0.0115384 0.0115732 0.0114851 0.01160
40 2 0.0028685 0.0028685 0.0028685 0.0028713 0.00287
40 10 0.0028761 0.0028761 0.0028768 0.0028713 0.00288
Transactions of the ASME
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For a short wide beam, the end effects are significant. In
central portion of the beam, the variation of the displacement w
x will be greatly suppressed and the plate will be flatter in t
region. To better understand this phenomenon, mode shapes
investigated. Both displacement and stress resultant mode sh
were found for the Timoshenko beam theory and the Mindlin pl
theory. To show the anticlastic behavior, plots were made of
displacement atz50 andy50 as a function ofx. All modes were
normalized to unit displacement atx5y5z50. Figure 6 shows
the Timoshenko and Mindlin solutions~labeled T and M! for a
length-to-depth ratio of 10 and width-to-depth ratio of 2. It can
seen in this figure that the two solutions almost coincide. By lo
ing at Figs. 2 and 3 it can be seen that this is also where
frequencies are reasonably close together. Figure 7 on the
hand is for a length-to-depth ratio of 10 and width-to-depth ra
of 10 for which the frequencies do not match. The Timoshen
and Mindlin solutions do not match for this case. The displa
ment is much flatter for the Mindlin plate solution than for th
beam solution. Displacement modes shapes were also foun
length-to-depth ratios of 20 and 40 for several values of the wid
to-depth ratio. In all cases the same behavior was noticed. Tha
if the frequencies agreed the mode shapes did also, and if
frequencies didn’t agree the Mindlin plate displacement mo
were much flatter.

Fig. 6 Displacement versus x at yÄzÄ0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 2. For a simply supported
beam.

Fig. 7 Displacement versus x at yÄzÄ0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 10. For a simply sup-
ported beam.
Journal of Applied Mechanics
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Looking at the stress resultants also proved valuable. For
Timoshenko beam solution the twisting moment resultant w
found by integratingytxy across the thickness of the beam, whe
x andy refer to the beam coordinates shown in Fig. 1. Figure
and 9 show some of the modal resultant moments in the body.
coordinate system and notation used for these figures is Mind
coordinate system and notation. Figures 8 and 9 show the twis
momentM yx at y5L/2 andz50 for both the Timoshenko and
Mindlin solutions. Also shown is the plot is the bending mome
Mx at y5z50. This is the bending moment in the thickness d
rection and is neglected~assumed zero! in the Timoshenko beam
formulation. The moments are in dimensionless form. They
made dimensionless by dividing by the shear modulus and
depth squared. In Fig. 8 a length-to-depth ratio of 10 and width
to-depth ratio of 2 was used. It can be seen that the twis
moments for both the Timoshenko and Mindlin formulations ar
very good match. The bending momentM y which was not shown
was 0.021 or approximately 40 times the maximum twisting m
ment and 100 times the thickness bending momentMx . Figure 9
is for a length-to-depth ratio of 10 and width-to-depth ratio of 1
It can be seen that there is no match between the two twis
moments, and the momentMx is larger than the twisting momen
found using the Mindlin method. The bending momentM y for
this example is 0.023 or roughly seven times the maximum tw
ing moment and five times the bending momentMx . Other com-

Fig. 8 Twisting moment Myx versus x at yÄL Õ2, zÄ0 and
bending moment Mx versus x at yÄzÄ0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 2. For a simply supported
beam.

Fig. 9 Twisting moment Myx versus x at yÄL Õ2, zÄ0 and
bending moment Mx versus x at yÄzÄ0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 10. For a simply sup-
ported beam.
MAY 2004, Vol. 71 Õ 365
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parisons of the twisting moment show similar results, that
when the frequencies for the two solutions match the twist
moments match, but when they aren’t reasonably close the tw
ing moments also differ. Also when there is no match the thi
ness bending moment is not negligible.

Results for Free-Free Comparison
Solutions for the Mindlin plate were checked against the w

of Gorman and Ding@7#. Of the 360 frequencies for thick plate
there was lack of agreement in only ten values. In private co
spondence with Professor Gorman it was determined that
those disagreements were typographical and four were du
false roots which sometimes occur in these types of formulatio
There were also some minor disagreements in mode identifica
however overall the agreement between the two was excel
The results of the thin plate values in Gorman and Ding w
compared with the Mindlin series solution using a thickness
width ratio of 0.0001. The results agreed to the same degre
accuracy as for the thick plate. Because of this agreement,
elementary plate solution plots, shown in this paper, are actu
the results for a thickness-to-width ratio of 0.0001 using the th
plate formulation.

Solutions for the Mindlin plate were checked against the thr
dimensional solution of Hutchinson and Zillmer@5,6#. To get con-
vergence in the three-dimensional solution a 13132 parallelepi-
ped was chosen and 20320340 terms were used in the solution
The three-dimensional fundamental frequency was 1.64723 f
Poisson’s ratio of 0.300. Mindlin plate theory yielded a frequen

Fig. 10 Shear coefficient reciprocal versus width-to-depth ra-
tio. S-H coefficient. Coefficients which match Mind-
lin plate solutions for the first mode for length-to-depth ratios
10, 20, and 40. For a free-free beam.

Fig. 11 Shear coefficient reciprocal versus width-to-depth ra-
tio. S-H coefficient. Coefficients which match Mind-
lin plate solutions for the second mode for length-to-depth ra-
tios 10, 20, and 40. For a free-free beam.
366 Õ Vol. 71, MAY 2004
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of 1.64725 for a shear coefficient of 5/~62n!. Timoshenko beam
theory yielded a frequency of 1.65066 using the S-H coefficien
is remarkable that both of these simple theories yielded good
sults for a shape that could neither be considered a beam n
plate.

Plots were made comparing the S-H coefficient reciprocal w
the beam shear coefficient reciprocal required to make the M
lin solution match the beam solution. A Poisson’s ratio of 0.3 a
a Mindlin plate coefficient of 5/~62n! was used for all plots.
Unlike the simply supported case, where one can simply refer
wave length, for the free-free beam different modes must be c
sidered separately. Figures 10 and 11 show the S-H coeffic
reciprocal vs. the width-to-depth ratio for the first two mode
respectively. The length-to-depth ratio is a parameter in th
plots and is numbered on the plots. It can be seen that the beh
is very similar to simply supported case shown in Fig. 2. Pl
were also made for the third and fourth modes but they were
similar to those shown in Figs. 10 and 11 that they are not sho
Figures 12 through 15 show the frequency versus width-to-de
ratio for beams of a fixed length. In these figures EP refers to
elementary plate solution, EB refers to the elementary beam s
tion, TB refers to the Timoshenko beam solution and MP refers
the Mindlin plate solution. Figures 12 through 14 are for the fi
mode for length-to-depth ratios of 10, 20 and 40, respectiv
Figure 15 is for the second mode with a length-to-depth ratio
20. It can be seen in all these plots that the change of frequenc
the elementary plate mimics that of the frequency change of
Mindlin plate. This is the same behavior that was found for t
simply supported case. The change in frequency with the be
aspect ratio can be attributed to plate action and not to the s
stress distribution. It can also be seen by comparing Fig. 10 w

Fig. 12 First mode frequency versus width-to-depth ratio, for a
length-to-depth ratio of 10, for the four solutions considered.
For a free-free beam.

Fig. 13 First mode frequency versus width-to-depth ratio, for a
length-to-depth ratio of 20, for the four solutions considered.
For a free-free beam.
Transactions of the ASME
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Figs. 12 through 14 and Fig. 11 with Fig. 15 that in regions wh
the required shear coefficient matches the S-H coefficient tha
frequencies for the Timoshenko and Mindlin solutions also ma

Finally it should be noted that all results reported in this pa
were for a Poisson’s ratio of 0.3. This was not meant to imply t
the solution was not highly dependent on Poisson’s ratio. On
contrary, the solution is highly dependent on Poisson’s ratio
fact Poisson’s ratio is the cause of the dependence of the freq
cies on the width of the beam. For a Poisson’s ratio higher t
the value of 0.3 all changes with the width-to-depth ratio in Fi

Fig. 14 First mode frequency versus width-to-depth ratio, for a
length-to-depth ratio of 40, for the four solutions considered.
For a free-free beam.

Fig. 15 Second mode frequency versus width-to-depth ratio,
for a length-to-depth ratio of 20, for the four solutions consid-
ered. For a free-free beam.
Journal of Applied Mechanics
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2 through 15 would be greater. For a Poisson’s ratio of zero
changes in those figures would disappear and they would sim
become horizontal lines.

Conclusions

• The new three-dimensional solution provides an excellent
sis of comparison for the Timoshenko beam and Mind
plate approximations.

• The Timoshenko beam solution using the S-H coefficie
gives good results only for a width-to-depth ratio of 2 or les
or a length-to-width ratio of 5 or greater.

• The Mindlin plate theory provides excellent results over t
entire range considered.

• The S-H coefficient is not just a function of the shear stre
distribution, but also includes the plate effects of the anticl
tic inertia and twisting.

• The S-H coefficient, while including some of the plate e
fects, does not include all the effects when the wave lengt
short.

• A wide rectangular beam may have a frequency which
ceeds the frequency predicted by the Euler-Bernoulli be
theory.

Dedication
This paper is dedicated to the memory of Scott D. Zillm

1956–2002.
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Measurement and Simulation of
the Performance of a Lightweight
Metallic Sandwich Structure With
a Tetrahedral Truss Core
Metallic sandwich panels with tetrahedral truss cores have been fabricated and
structural performance evaluated. A fabrication technique involving deformation-sha
and brazing has been used. The responses of the structure in core shear and
bending have been measured. The results demonstrate robust behavior beyond th
load. A finite element simulation of the core shear response duplicates the features
experimentally. When combined with the constitutive properties of the face sheet ma
these shear characteristics have been shown to predict, with good fidelity, the limit
for panels in bending.@DOI: 10.1115/1.1757487#
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1 Introduction
The attainment of minimum weight structures has a long h

tory, @1–8#. Three technical factors are involved in achieving th
goal: ~i! materials selection,@1#, ~ii ! topology optimization,
@9–17#, and ~iii ! multifunctionality, @12,16#. Topologies that can
be used to achieve high load capacity at low weight are exem
fied by truss structures that stretch or compress without ben
and honeycomb core panels,@11–20#. The truss topology has th
benefit that the open spaces can be used to impart functiona
in addition to load bearing, such as active cooling@1,12,16#,
whereupon, the extra weight of an additional component norm
needed to imbue that extra function can be saved.

Performance indices are needed to ascertain minimum we
configurations and to compare designs. The indices are base
overall structural weight,W ~per unit area!, load, P ~per unit
width!, stiffness, and yield strain,«Y . When the faces and the cor
are made from the same alloy, the weight index is,@1,6,11#:

C5
W

rL
(1)

whereL is the length of the panel/beam andr the density of the
solid material.

For designs based onstrength, the loads supported incompres-
sion can be compared using the load index,@6#:

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 2, 2002; final revision, December 29, 2003. Associate Editor: E. Arruda. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Journal of Applied Mechanics, Department of Mechanical and Environmental E
neering, University of California–Santa Barbara, Santa Barbara, CA 93106-5
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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whereE is the Young’s modulus. Forbendingover a spanS, it is
more convenient to express the load index through a combina
of the maximum bending moment,M, and maximum transverse
shear,V ~both per unit width!, @11#:

Pb5
V

AEM
. (2b)

The ratio of the maximumM and V defines a characteristic
length scale,,[M /V, @11#. For example, in three-point bending
,5S/2, @11,17#. When this index is used, the weight index~1! is
redefined with, replacingL.

Comparative indices exist forstiffness but they are
configuration-dependent,@1,2,7,9#. Stiffness governs the weight a
smaller loads, while strength is performance limiting at high
loads, @1#, exemplified by Fig. 1. The present assessment is
stricted to strength-limited designs, pertinent to high loads.

Strength-limited minimum weight designs are found byidenti-
fying the failure modes, specifying the load capacity and the
varying the dimensions to determine the lowest weight for e
mode,@1,11#. The benchmark configurations against which co
peting technologies should be compared are summarized on
2, @12,15#.

For flat panels, sandwich designs with honeycomb cores re
sent the performance benchmark in bending@11# ~Fig. 2~a!!, while
hat-stiffened panels define the benchmark in compression,@6#,
~Fig. 2~b!!. For curved configurations, the reference system
comprised of distributed axial and circumferential stiffene
@1,12,21#, ~Fig. 2~c!!. Alternative topologies need not structural
outperform these benchmarks, provided that they exploit ot
attributes such as cost, durability, strength retention after imp
@1,22,23#, and multifunctionality,@1,12,16#.
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Panels with open truss cores offer one such alternative,@11,18#.
They are more amenable to forming into complex shapes t
honeycomb cores,@19#, and they allow fluids to readily pas
through, @16#, rendering them less susceptible to internal cor
sion. They are also attractive for cross flow heat exchange,@7#. In
flat panels, when optimized, such cores are as light as the be
mark designs in both bending,@11#, ~Fig. 2~a!! and compression,
@1,21#, ~Fig. 2~b!!. Moreover, in curved panels, they are muc
more structurally efficient than stiffened designs,@1,21#, ~Fig.
2~c!!. At loads relevant to aerospace applications,@6#, the mini-
mum weight occurs at a core relative density in the range 2–3
with thin faces~thickness to load span of order 331023), @11#.
The failure mechanisms operating at the optimum depend on
yield strain of the alloy being used,@11#. At the high yield strains
pertinent to aerospace grade Al alloys, failure occurs by conc
rent face yielding, face buckling and elastic buckling of the co
pressed truss core members,@11#. For the lower yield strains rel-
evant to stainless steels, the failure modes are concurrent
yielding, face buckling and core member yielding,@11#.

Experimental assessments of these predictions have been
in panels fabricated by an investment casting process,@18#, using
materials having yield strains in the range where the core respo
is yield ~rather than elastic buckling! dominated. These investiga
tions had two primary limitations:~i! due to the constraints on
aspect ratio imposed by investment casting, the core mem
were less slender than that at the optimum,~ii ! the casting intro-
duced defects that limited the ductility, inhibiting the ability t
probe the performance envelope. Other limitations included
relatively high manufacturing cost associated with investm
casting, as well as the limited property range that can be acce
~relative to wrought material!.

These issues are addressed in the present study by apply
manufacturing procedure for open cell tetrahedral truss core st
tures ~Fig. 3! applicable to wrought metals,@19#. The cores are
made using metal perforation and deformation-shaping proces
They are bonded to thin metal face sheets using a brazing
proach. The specific objectives of this article are as follows:~i!
manufacture wrought panels with core densities in the ra
found for fully optimized panels~about 2%!, @11#; ~ii ! measure the
performance of these panels subject to overall bending loads

Fig. 1 The minimum weight as a function of load for a simply
supported panel subject to a uniformly distributed pressure,
evaluated for a material with yield strain, «YÄ0.007, and maxi-
mum allowable center displacement, dÕSÄ0.1. Results are pre-
sented for several values of the relative density of the core. In
all cases, at large loads, the panels become strength-limited.
Journal of Applied Mechanics
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Fig. 2 „a… The minimum weight as a function of load capacity
for various panels under shear and bending load. „b… Weight
index versus load index for axially compressed flat panels,
†1,10,18,22‡. „c… The minimum weight as a function of load for
axially compressed curved panels. N is the load per unit length
of the periphery, †12‡.
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sess their robustness, and compare the load capacity with pr
tions, @11#; ~iii ! perform independent core shear measureme
and simulations to facilitate model validation.

2 Basic Mechanics
The four possible failure modes for the tetrahedral truss c

sandwich structure with solid face sheets are face sheet yield
face sheet buckling, core member yielding and core mem
buckling, @11#. The face sheet failure modes are dictated by
bending moment per unit width,M. The associated constraints ar
@11#:

M

t fHc
<sy ~ face sheet yielding! (3a)

M

t fHc
<

49p2E

432~12n2!
S t f

d D 2

~ face sheet buckling! (3b)

Fig. 3 Tetrahedral unit with ligaments having rectangular
cross-section. The directions of positive and negative shear
are indicated.
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whereHc is the core height,t f is the face sheet thickness,Lc is the

truss member length,d[ALc
22Hc

2, sy is the yield strength, andn
is Poisson’s ratio. The core failure modes are dictated by the s
force per unit width,V, @11#. For truss members with rectangula
cross-section~width, w and thickness,t!, the constraints are

A3VdLc

Hcwt
<sy ~core member yielding! (3c)

A3VdLc

Hcwt
<

kp2E

12 S t

Lc
D 2

~core member buckling! (3d)

wherek depends on the end conditions of the truss members.
conservatism, we assume that the nodal connections betwee
core members and the face sheets are pin-jointed (k51), @11#.
For convenience, each geometric parameter is normalized b,,
allowing the constraint functions to be rewritten in the nondime
sional forms:

S V

AEM
D 2

E

sy

,2

t fHc
<1 ~ face sheet yielding! (4a)

S V

AEM
D 2

432~12n2!

49p2

d2,2

t f
3Hc

<1 ~ face sheet buckling!

(4b)

S V

AEM
D 2

E

sy

A3dLc,

Hcwt
<1 ~core member yielding! (4c)

S V

AEM
D 2

12A3

kp2

dLc
3,

Hcwt3
<1 ~core member buckling!

(4d)

A failure mode is considered active when the associated c
straint function reaches unity. As discussed below~Section 6!, this
approach can be used to predict the load at failure initiation du
panel bending.

3 Sandwich Panel Construction
Truss cores can be fabricated from wrought metals by star

with perforated metal sheets and bending along diagonal no
@19#. To illustrate the fabrication, commercially available 30
stainless steel~Fe-18Cr-8Ni! with hexagonal perforations was ob
tained from Woven Metal Products, Inc.~Alvin, TX !. The truss
members had widthw51.26 mm and thickness,t50.59 mm. The
rectangular cross sections~which have lower core performanc
than square sections! were convenient for manufacturing,@19#.
After bending~Fig. 4~a!!, the core height was,Hc510 mm, such
Fig. 4 „a… Tetrahedral truss core after shaping, „b… typical core Õface sheet bond
Transactions of the ASME
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that the relative density was,r̄[rc /r51.7%, ~whererc is the
density of the core andr is the density of the solid material!.

A brazing approach was used for attaching the face-shee
the cores. The cores were lightly sprayed with a powder comp
ing a mix of a polymer~Nicrobraz® 520! and 140 mesh Ni-25Cr-
10P alloy~Nicrobraz® 51!, both supplied by Wal Colmonoy Corp
~Madison Heights, MI!. The solidus and liquidus of this alloy ar
880 and 950°C, respectively, whereas the solidus of 304 stain
steel is approximately 1400°C. The coated cores were placed
tween solid 304 stainless steel face sheets and a small com
sive pressure was applied. The panel assemblies were heat
vacuum (,1022 torr) to 550°C for 1h to volatilize the polymer1.
The system was evacuated to less than 1023 torr, and the tempera
ture increased to 1100°C and held for 1 h. At temperature,
alloy melts and is drawn into the core/face sheet contacts by
illarity. Bonding then occurs as interdiffusion changes the lo
composition, causing it to solidify. Robust joints with desirab
nodes ensue~Fig. 4~b!!. Upon bonding, the core height diminishe
slightly, to Hc59.8 mm, increasing the core relative density tor̄
51.8%. This density is very close to that found for fully op
mized panels,@11#.

For the panel bending assessment, a face sheet thicknet f
50.75 mm, was chosen, exceeding that for the optimum struct
@11#. For the core shear tests, much thicker face sheets were
(t f53 mm) to prevent distortions during the measurements.

4 Test Design
After cooling to ambient, the panels were machined for testi

The flexure panels had span length,S5202 mm, width B
566 mm, and mass 0.22 kg~Table 1!. They were tested in three
point loading by using a procedure similar to that described e
where,@19,22#. Flat-faced loading platens 16 mm thick were a
hesively bonded to the faces of the panels. The loads were ap
through lubricated rollers inset into the platens that allowed
specimen to rotate upon bending, with minimal friction. The te
were performed in a servo-electric test frame. The load and lo
point displacements were measured simultaneously.

The shear test assembly comprised two L-shaped platens
rigidly held each of the two face sheets of the panel~Fig. 5!. The
assembly was placed between flat loading surfaces connect
the load cell and actuator of a servo-hydraulic load frame. Imp
ing a compressive load to the assembly created a conditio
nearly pure shear at the truss core. The tests were performed
load point displacement rate of 0.1 mm/min. Displacements w
measured by a laser extensometer. Tests were performed i
negative and positive orientations shown in Fig. 3,@18,20#. In the
positive orientation, one truss member is in tension and the o
two in compression and vice versa for the negative orientatio

A high resolution digital camera was connected to the tes
frame in order to capture side-view images of the core. Th
images were used to identify the failure mechanisms.

The constitutive properties of the 304 stainless steel used in
face sheets were measured after exposure to a simulated bo
cycle ~1100°C for one hour!. Flat dog-bone-shaped tensile spe
mens were tested at a strain rate of 1024 s21.

1Note that the alloy powder remains adhered to the structure after volatilizat

Table 1 Geometric parameters for three point bending panels

Parameter Dimension„mm…

Core height,Hc 9.8
Face sheet thickness,t f 0.75
Truss member length,Lc 12.2
Truss member width,w 1.26
Truss member thickness,t 0.59
Span length,S 202
Panel width,B 66
Journal of Applied Mechanics
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5 Measurements and Observations
Figure 6 shows the true stress-strain response of the 304 s

less steel. The material exhibits a 0.2% offset yield strength,sy
5217 MPa. The hardening rate beyond yield is almost linear
to a strain of 10% and can be characterized by a hardening mo
lus, H[ds/d«52.5 GPa.

The shear stress/strain responses measured in the positive
negative orientations~Fig. 7! demonstrate the asymmetry of th
tetrahedral truss core. In the negative orientation, the limit load

on.

Fig. 5 Shear test fixture assembly

Fig. 6 True stress-strain response for 304 stainless steel fol-
lowing annealing at 1100°C for 1 hour
MAY 2004, Vol. 71 Õ 371
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Fig. 7 Shear stress Õstrain response of tetrahedral truss core
panels in the negative and positive orientations

Fig. 8 Load-deflection response during panel bending. The
open symbol represents the predicted load from Eq. „5… at
which yielding occurs.
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appreciably lower than in the positive orientation because
most heavily stressed trusses are in compression and susce
to plastic buckling,@18,20#. The maximum shear stress in th
orientation,tmax51.0 MPa, occurs at a shear strain of 1.4%, o
served to be coincident with plastic buckling of the compres
members. In the positive orientation, the corresponding maxim
is tmax51.7 MPa, occurring at a shear strain of 13%. In this o
entation, the most highly stressed trusses are in tension. T
stretch and transfer load onto the compressed trusses, even
causing them to buckle plastically.

A load/displacement curve measured in bending is summar
in Fig. 8. An approximately steady-state load,Pss51.5 kN is at-
tained at displacements between 2 mm,dss,5 mm, followed by
gradual softening beyond 5 mm. An image obtained at the li
load~Fig. 9! indicates that the response is asymmetric and that
panel fails by core shear. That is, since the truss assemblies o
left experience shear in the negative orientation,@18#, failure oc-
curs through plastic buckling of the compressed members.
buckling induces large strains that cause face sheet yielding
result in the formation of a macroscopic plastic hinge at the ou
loading platen,@1,20,22#. In contrast, the right side experience
positive shear. Consequently, the trusses stretch with relati
small ensuing strain levels, inhibiting both face yielding and hin
ing. After unloading, all of the core/face-sheet bonds were int
with no visible cracking.

6 Finite Element Simulation of the Shear Response
The finite element simulation approach is similar to that d

scribed by Hyun et al.@20#. The exact rectangular geometry of th
truss members has been used, as well as the measured stress
curve for the faces~Fig. 6!. The truss assembly and the finit
element mesh are shown in Fig. 10. The finite element c
ABAQUS has been used. The base of the truss assembly is fi
The top, where the assembly is bonded to the upper face, is
placed parallel to the face, without rotation. The deformations
the core that occur in the negative and positive orientations
large displacements are shown in Fig. 10. They demonstrate
plastic buckling of the compressed member in the negative or
tation and the stretching of the tensile member in the posi
orientation.

The shear stress/plastic strain relations calculated for the
orientations are superposed on the experimental measureme
Fig. 11. The similarity between the curves in both orientatio
affirms the self-consistency of the present measurement and s
lation protocols and provides confidence in the scaling relati
~with relative density and core member aspect ratio! elaborated
elsewhere,@11,13,20#. There are two minor discrepancies. Th
simulations generally underestimate the flow strength by a
percent. Since the simulations use the stiffest possible boun
Fig. 9 Image of the panel obtained at the displacement indicated in Fig. 8. Note the plastic
buckling of the compressed truss core members on the left side and the associated plastic
hinge. The span was SÄ202 mm, the flat steel indenters were 16.0 mm wide and the overhang,
h overÄ22.5 mm.
Transactions of the ASME
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conditions, this difference implies that the material comprising
truss members has higher strain hardening than that measure
the faces. This may be attributable to chemical interactions
tween the braze alloy and the steel. The second discrepanc
lates to the onset of plastic buckling in the negative orientati
The simulation overestimates the stress at which this occurs
about 10%. This difference is associated with the imperfect
sensitivity of the buckling condition.

7 The Bending Response

Initial Failure Load. By inserting the geometric paramete
for the panel~Table 1! into equation~4!,2 core member yielding is

Fig. 10 Finite element simulations showing the deformation
after shearing in „a… the positive orientation at gplÄ0.14 and „b…
the negative orientation at gplÄ0.10. Note the plastic buckling
of the compressed member in the latter.
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found to become active at the lowest load, whenPb[V/AEM
56.831024. The corresponding absolute yield load is

Py5Pb
2BES. (5)

Inserting the panel dimensions~Table 1! into ~5!, the predicted
yield load becomesPy51.25 kN. This value corresponds close
to that measured at the onset of nonlinearity~Fig. 8!, affirming
that failure initiates in the core.

Limit Load. The beam theory solution for the collapse loa
of a sandwich panel in three-point bending with small overha
hover, is given by,@1,22#,

2The analysis assumessy /E50.001 andn50.33. Further, for three point bend-
ing, ,5S/25101 mm.

Fig. 11 Simulations of the shear stress as a function of plastic
strain in „a… the positive orientation and „b… the negative orien-
tation. The experimental measurements have been super-
posed.
MAY 2004, Vol. 71 Õ 373
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2

S
sy12BHctmaxS 11

2h

S D . (6a)

The corresponding result for a panel with large overhang
@1,22#,

PB5
2Btf

2

S
sy12BHctmax. (6b)

Here, the pertinent value oftmax is that corresponding to the
softer, negative orientation. The lower of the two loads,PA and
PB , dictates panel bending strength.

Upon incorporating into~6! the measured shear strength in t
negative orientation,tmax51.0 MPa, the face sheet yield strengt
sY5217 MPa, and the panel dimensions~Table 1!, the peak loads
are predicted to bePA51.7 kN andPB51.5 kN. The lower value
is virtually identical to the measured collapse load. The quality
the agreement suggests that simple beam theory models ca
equately account for measured limit loads, provided that indep
dent information about the core shear strength and face streng
available.

8 Summary
Metallic sandwich panels with tetrahedral truss cores have b

fabricated by deformation shaping and brazing. The response
core shear and panel bending have been measured. The r
demonstrate a robustness attributed to the wrought nature o
material. Finite element models of the shear response dupli
the essential features found experimentally. A small~few percent!
discrepancy is attributed to incomplete understanding
the stress/strain characteristics of the material state in the
members.

When combined with the constitutive properties of the fa
sheet material, the core shear characteristics have been us
predict the limit load for panels in bending by beam theory. T
closeness of the agreement indicates that such models are ca
of adequately predicting limit loads, given independent inform
tion about the core shear strength.
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Nomenclature

B 5 beam width
d 5 base leg of tetrahedral truss assembly

([ALc
22Hc

2)
E 5 Young’s modulus

FN 5 shear force in negative orientation
FP 5 shear force in positive orientation

hover 5 overhang in three-point bend experiment
H 5 hardening modulus

Hc 5 core height
k 5 buckling constant (k51 for pinned ends, 4 for

built-in ends!
L 5 length of panel/beam

Lc 5 truss member length
M 5 moment per unit width
N 5 load per unit peripheral length for axially

compressed curved panels
P 5 load per unit width

PA , PB 5 collapse loads in bending for small and
large overhangs, respectively

Pss 5 steady-state load in three-point bending
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Py 5 yield load in three-point bending
S 5 three-point bend span length
t 5 truss core member thickness

t f 5 face sheet thickness
V 5 shear per unit width
w 5 truss core member width
W 5 weight per unit area
d 5 displacement in three point bending

dss 5 deflection range forPss
ey 5 yield strain

g, gpl 5 shear strain and plastic shear strain, respectively
, 5 characteristic length scale ([M /V)

C 5 nondimensional weight index
P, Pb 5 load indices

r 5 density of solid material
r̄ 5 relative core density ([rc /r)

rc 5 density of core
sy 5 0.2% offset yield strength

t 5 shear stress
tmax 5 maximum shear stress

n 5 Poisson’s ratio
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Experimental Investigation on the
Plasticity of Hexagonal Aluminum
Honeycomb Under Multiaxial
Loading
A new custom-built universal biaxial testing device (UBTD) is introduced and succes
used to investigate the response of aluminum honeycomb under various combinati
large shear and compressive strains in its tubular direction. At the macroscopic l
different characteristic regimes are identified in the measured shear and normal s
strain curves: elastic I, elastic II, nucleation, softening, and crushing. The first ela
regime shows a conventional linear elastic response, whereas the second elastic reg
nonlinear due to the generation of elastic buckles in the honeycomb microstruc
Nucleation is the point at which the cellular structure loses its load carrying capacity
a result of plastic collapse. It precedes a rapid drop of stress levels in the softening re
as pronounced plastic collapse bands emerge in the microstructure. Formation
growth of plastic folds dominate the microstructural response in the crushing phase
mechanical features of this phase are long stress plateaus for both the correspo
shear and compressive stress-strain curves. Based on these observations, hone
plasticity is established by making analogies of plastic hinge lines and folding syste
the cellular microstructure with dislocations and slip line systems in a solid lattice,
spectively. The initial yield surface is found to take the form of an ellipse in stress s
while the crushing behavior is described by a linear envelope along with a nonassoc
flow rule based on total strain increments.@DOI: 10.1115/1.1683715#
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1 Introduction
The cellular microstructure of a honeycomb is composed o

network of joined, parallel, thin-walled tubes. As a result, hon
combs are strongly orthotropic, thereby providing high mecha
cal performance per unit weight under shear and normal load
in the tubular direction. Among the three orthotropy axes of
honeycomb microstructure the tubular or T-direction is the str
gest direction. As compared to loading in the weaker in-pla
directions~W and L!, the variation in internal energy is typicall
by one to two orders of magnitude as high upon loading in
T-direction. Combined out-of-plane loading, i.e., combinations
normal and shear stresses in the T-W and T-L–planes, is a c
acteristic of most engineering applications of honeycombs. In
ticular, the mechanical response of honeycombs to plastic ou
plane deformations is of growing interest for industr
applications. Traditionally, sandwich structures are designed
elastic loading scenarios~e.g., Allen@1#!, but recent studies on th
crushing of sandwich profiles have shown the merits of thin sa
wich sheets in crashworthiness applications~e.g., Mohr and
Wierzbicki @2#!. Other industrial applications include the formin
of sandwich floor panels for passenger cars or the use of ho
combs sandwich structures for the hood of a car, where the de
for the accidental impact of a pedestrian requires in-depth kno
edge of the plasticity of metallic honeycombs.

A summary on various honeycomb properties is given in
textbookCellular Solids: Structure and Propertiesby Gibson and

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Mar. 25, 200
final revision, July 23, 2003. Associate Editor: M.-J. Pindera. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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Ashby @3#. The in-plane behavior of honeycombs can be stud
on the basis of two-dimensional beam models. Thus, besides
lytical expressions for elastic properties, closed-form solutions
the macroscopic yield loci for in-plane loading could be deriv
~Klintworth and Stronge@4#!. Papka and Kyriakides@5# used a
two-dimensional beam model for the cell walls of the microstru
ture to reproduce the complex deformation modes of polyme
honeycombs under biaxial in-plane loading. The response o
metallic honeycomb to uniaxial compressive loading in t
T-direction was studied in detail by various authors and an a
lytical expression for the mean crushing stress was presente
McFarland@6# and Wierzbicki@7#.

However, little is known on the mechanical behavior of metal
honeycombs under combined out-of-plane loading. Standard
ing techniques such as the combined compression-torsion Ta
Quiney tests on cylindrical specimens are not suitable for hon
combs, where the orthotropy axes are aligned with the Carte
coordinate system. Other experimentalists report premature fa
of the bond between the honeycomb and loading platens w
performing shear tests according to the ASTM Standard C
~Hexcel @8#!. Uncontrolled localization of deformation in doubl
shear lap honeycomb specimens subjected to combined shea
normal loading generated unacceptable noise in the correspon
force displacement curves~Wierzbicki @9#!.

Recent findings indicate that the use of the Arcan apparatu
the clamped configuration allows for the biaxial testing of hone
combs~Petras and Sutcliffe@10#!. Based on the detailed analys
of this testing configuration~Mohr and Doyoyo@11#!, the en-
hanced arcan apparatus~EAA! was developed for the biaxial tes
ing of cellular materials~Mohr and Doyoyo@12#!. The underlying
concept is to perform fully displacement-controlled tests, there
bypassing problems due to the localization of deformation in h
eycombs. The EAA has been successfully used to measure
initial failure envelope of aluminum honeycomb subjected
combined out-of-plane loading~Doyoyo and Mohr@13#!.
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Following the concept of the EAA, we present a new testi
device called the universal biaxial testing device~UBTD! to study
the post-yield behavior of aluminum honeycomb under combin
out-of-plane loading. Two force components are measured to
termine the macroscopic stresses in the sandwich specimen
in-depth discussion of experimental observations discloses the
ture of microstructural deformation mechanisms that determ
the mechanical behavior. It is found that a folding system co
posed of plastic hinge lines and compatibility zones determi
the plasticity of a metallic honeycomb under quasi-static loadi
At the same time, the following observations are made on
macroscopic level:~1! an elliptical yield envelope defines the on
set of microstructural collapse,~2! a linear inner envelope de
scribes the stress level under large deformations, and~3! a nonas-
sociated flow rule characterizes the relationship between st
increments and the stress state.

2 Specimen and Homogenization

2.1 Material. Aluminum 5056-H39 foil is the base materia
for the cellular structure of the tested honeycomb. The foil thic
ness ist533mm. The hexagonal microstructure is produced
the expansion process. Cell walls initially aligned with th
L-direction ~ribbon direction! are bonded together and thus are
double thickness~inset in Fig. 1!. Their width is h52.4 mm,
whereas the width of the single-thickness walls isl 53.1 mm. The
cell wall expansion angle as defined in Fig. 1 isu540°. The initial
density isr0546.5 kg/m3, which corresponds to a relative densi
of 1.8% ~with respect to the density of solid aluminum!.

2.2 Specimen. For the present study, we perform combine
compression and shear tests on sandwich specimens. In this
figuration, a honeycomb core of constant height is sandwic

Fig. 1 Top view of the sandwich specimen before being
bonded to the second grip plate. The insert shows a schematic
of a single honeycomb cell. The shaded rectangle highlights
the nature of the microstructure.
376 Õ Vol. 71, MAY 2004
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between two faceplates~Fig. 2!. The faceplates serve as grips
mount the specimen onto the testing device. An epoxy adhe
~Lord 310A/B! was used to bond the honeycomb onto roughen
aluminum grip plates. The specimen width ofl W580 mm was
predefined by the size of the biaxial testing device. This cor
sponds to 16.5 honeycomb cells along the W-direction. The w
along the ribbon direction,l L552.8 mm, was chosen according
the recommendation of ASTM C273. Two opposite aspects ha
be taken into account for the choice of the specimen height: A
result of the bonding technique employed, the cell walls are e
bedded into an adhesive layer; thus, to minimize the influence
the adhesive layer on the test results, the specimen height sh
be large as compared to the up to 1 mm thick bond line. On
other hand, under shear loading, a large width to height r
l W /C ~i.e., a small specimen height! is desirable to guarantee
homogeneous stress field along the W-direction. Here, a heigh
C515 mm is chosen for the sandwich specimen.

We will test the specimens under combinations of normal a
shear loading in the T-W–plane. Alternatively, the specime
could have been prepared for testing in the T-L–plane. Note
when calibrating transverse isotropic constitutive models from
perimental data, the use of the normal-shear interaction cu
found from experiments in the TW-plane results in an undere
mation of the energy absorption of honeycombs, while mod
calibrated from T-L data will rather overestimate the energy
sorption. In practical applications, the underestimation of the
ergy absorption is preferred, and thus, as a first step, we limit
attention to the T-W–plane.

2.3 Homogenization. We discuss the mechanical respon
of metallic honeycomb on two scales: On the macroscopic le
honeycomb is described as a homogeneous material, wherea
the microstructural level the cellular microstructure and individu
cell walls are considered.

The honeycomb microstructure is periodic along the in-pla
directions W and L. The characteristic length of the periodicity
the honeycomb cell sizeD ~see Fig. 1!. Thus, successful modeling
of the honeycomb by its homogeneous equivalent requires
macroscopic~structural! scaleslW , lL along the in-plane direc-
tions to be large as compared to the cell size, i.e.,lW /D@1 and
lL /D@1. For example, for the present specimen, we havelW
580 mm, lL552.8 mm, andD>5 mm and thuslW /D>16 and
lL /D>10. Experimental results described below reveal that t
morphological in-plane periodicity is preserved under inelas
out-of-plane loading. In other words, on the macroscopic sc
both the undeformed and deformed configurations of the hon
comb microstructure are statistically homogenous in the W-
plane.

In contrast, significant morphological changes occur along
T-direction when the microstructure is subjected to combined o
of-plane loading. Note that in sandwich applications, the mac
scopic scale along the T-direction,lT , is given by the core height
lT5C. Initially, the cell walls are straight along the T-direction
However, in particular under compressive loading, localization
deformation and plastic collapse bands dominate the microst
tural response~Mohr and Doyoyo@14#!. The microstructure loses
Fig. 2 Schematic of the sandwich specimen
Transactions of the ASME
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its statistical homogeneity along the T-direction and becomeshet-
erogeneous on the macroscopic scale. Thus, size effects may aris
according to the representative volume element~RVE! chosen to
characterize the macroscopic behavior~see, e.g., Franc¸ois et al.
@15#!.

The macroscopic~engineering! strain tensorE is introduced as
the spatial mean of the local strains in the RVE. Under combi
out-of-plane loading, we assume the following form of the str
tensor:

E5«~eT^ eT!1
1

2
gTL~eT^ eL1eL ^ eT!

1
1

2
gTW~eT^ eW1eW^ eT! (1)

where (eT ,eL ,eW) is an orthogonal unit vector basis aligned wi
the initial orthotropy axes of the honeycomb. Equation~1! implies
that the elastic and plastic Poisson’s effects are neglected. H
we assume the sandwich specimen height as a characte
length of the RVE along the T-direction. Thus, the macrosco
strains are directly given by the displacement field (uT ,uW) ap-
plied to the top boundaries of the specimen. The normal st
reads

«5
uT

C
. (2)

Under combined loading in the T-W–plane, we havegTL50 and
gTW5g, where

g5
uW

C
. (3)

It follows from the loss of statistical homogeneity along t
T-direction that the choice of the specimen heightC might affect
the observed macroscopic response. A detailed study of this
tential size effect is left to future research.

The energy conjugate stress tensorS reads:

S5s~eT^ eT!1tTL~eT^ eL1eL ^ eT!1tTW~eT^ eW1eW^ eT!.
(4)

Note that due to the significant orthotropy of the honeycom
in-plane stress components are typically about two orders of m
nitude smaller than out-of-plane componentss, tTL andtTW , and
thus are neglected in our discussion. In the present experim
we havetTL50 and

s5
FT

A0
(5)

and

t5
FW

A0
(6)

where tªtTW . A05 l W3 l L is the cross-sectional area of th
sandwich specimen.FT and FW are the normal and shear force
acting on the specimen.

3 Experimental Procedure
Previous work demonstrated that displacement-controlled t

ing procedures are most suitable to investigate the mecha
behavior of honeycombs~Petras and Sutcliffe@10# and Doyoyo
and Mohr @13#!. The control of all displacements during testin
avoids undesirable deformation modes due to localization in
lular solids~Mohr and Doyoyo@12#!. Here, the universal biaxia
testing device~UBTD! is used to apply combinations of larg
compressive and shear displacements to the boundaries of a
eycomb specimen. All tests are performed under quasi-static l
ing conditions.
Journal of Applied Mechanics
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3.1 Mechanical Details. The design of the UBTD is base
on the concept of the enhanced arcan apparatus~see Mohr and
Doyoyo @12#!. A schematic of the UBTD is given in Fig. 3. Th
specimen is placed between the fixed and movable parts of
apparatus. The movable part is allowed to slide along the vert
direction ~y-axis! only. All other degrees of freedom of the mov
able part including rotations are restricted. The inclination of
specimen with respect to the loading axis~y-direction! determines
the combination of applied shear and normal displacements.
inclination is measured by the biaxial loading anglea ~angle be-
tween theW-axis andy-axis in Fig. 3!. The corresponding norma
and shear displacements are

uT5uy sina (7)

uW5uy cosa (8)

whereuy denotes the vertical displacement. In other words,
biaxial displacement field on the top boundary of the specime
uniquely characterized by the biaxial loading angle and the res
ant displacement. Note that the biaxial testing angle is fix
throughout testing, whereas the resultant displacement is
scribed, which limits the experimental capabilities to linear loa
ing paths in terms of displacements. As shown in detail by Mo
and Doyoyo@11#, reliable testing requires the measurement of
least two force components in the testing plane. The UBTD mo
tors three force components throughout testing: the horizo
forces Fx

(1) and Fx
(2) , and the vertical forceFy ~Fig. 3!. From

static equilibrium, we find the normal and shear force comp
nents,FT andFW , acting on the sandwich specimen:

FT5Fy sina2~Fx
~1!1Fx

~2!!cosa (9)

FW5Fy cosa1~Fx
~1!1Fx

~2!!sina (10)

3.2 Technical Details. A picture of the UBTD is shown in
Fig. 4. Within this section, we denote the part numbers accord
to Fig. 4 in parentheses. The UBTD is designed as an inte
testing frame that provides the function described above.
movable part of the device~1 to 5! slides vertically on four ball
bearings~5! along two fixed guidance rods~8!. Parts~7! to ~13!
belong to the fixed portion of the device. The bottom plate~12! is
rigidly connected to the table of a universal testing mach
~MTS, Model G45, Eden-Prarie, MN!. A universal joint~2! con-
nects the movable grip~1! to the screw-driven crosshead of th
universal testing machine. A set of removable clamps~4,10! posi-
tioned the specimen in the center between the movable and fi
part of the device. Four screws on either side provided suffic

Fig. 3 Schematic of the universal biaxial testing device
„UBTD…
MAY 2004, Vol. 71 Õ 377
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clamping pressure. The inclination of the specimen~6! is set prior
to testing by rotating the specimen holders~3,9!. Tests can be
performed at any biaxial loading angle between 0 and 90°, with
increment of 1 deg.

A linear variable differential transformer~13! built into the
UBTD measures the relative displacement between the mov
and fixed portion of the device. This measurement provides
resultant displacement acting on the specimen,uy , assuming the
UBTD to be rigid as compared to the honeycomb specimen. D
placements ranging from210 mm to110 mm are allowed by the
current design. The vertical forceFy is recorded by the standar
load cell~14! of the universal testing machine~200 kN MTS load
cell!. The horizontal forces are measured by two DC-DC lo
cells ~Sensotec, Model 31! integrated into the top~11! and bottom
plates ~12! of the fixed portion of the UBTD. Figure 5 show
details of the integrated horizontal load cell. The load cells ha
been calibrated as built in for a total horizontal load of up to 3 k
The accuracy of the horizontal load measurement at room t
perature is62%.

3.3 Sample Tests. We present the results from tests
60deg to illustrate the testing procedure. Recordings of the ve
cal force and the two horizontal forces are shown in Figs. 6 an
All force readings are set to zero before the sandwich specime
placed between the adjusted rotating specimen holders. Comp
sive stresses arise~predominantly! along the T-direction as the
clamping pressure is applied to the short sides of the speci
grip plates. This may be explained by constrained Poisson’s

Fig. 4 Photograph of the UBTD „front view …: 1-movable grip
plate, 2-universal joint, 3-rotating specimen holder „top …,
4-positioning clamp „top …, 5-roller bearing, 6-sandwich speci-
men, 7-fixed grip plate, 8-vertical guidance rod, 9-rotating
specimen holder „bottom …, 10-positioning clamp „bottom …, 11-
top plate, 12-bottom plate, 13-LVDT, 14-vertical load cell „mov-
able crosshead …, and 15-table of fixed cross-head
378 Õ Vol. 71, MAY 2004
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formation in the grip plates~Henn @16#!. After clamping, the
crosshead was adjusted such that the vertical load was zero~Fig.
6!. However, from the nature of the testing method, an init
offset in the horizontal force measurement is inevitable. For
present 60 deg tests, the horizontal preload load ranges from
to 300 N ~see the encircled region in Fig. 7!. All tests are per-
formed at a constant crosshead velocity of 1 mm/min. Pictures
taken at different stages during the test. The tests were pause
image acquisition, which generated small relaxation drops in
load ~Fig. 6!. Furthermore, two unloading/reloading cycles a
typically performed at large strains.

Comparison of the horizontal force measurements reveals t
after the vertical load is applied, a difference develops betwe
the two horizontal force components. Under compressive load
the force acting on the bottom load cell is higher than the fo

Fig. 5 Detail of how the horizontal load cell is integrated into
the top plate „labels are consistent with the captions of Fig. 4 …

Fig. 6 Vertical force „MTS load cell … versus vertical displace-
ment „LVDT… for tests under 60 deg loading. The encircled re-
gion highlights an example for minor drops in the load curve
while the test was paused for image acquisition.
Transactions of the ASME
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acting on the top load cell. This observation is explained as
lows: Suppose that the resultant reaction force in the deform
specimen acts at the geometric center of the specimen. At
same time, note that, throughout testing, the geometric cente
the specimen moves with respect to the mechanical center o
testing device. The latter is defined by the intersection of the t
ing axis ~y-axis! with the centerline between the horizontal loa
cells ~dashed horizontal line in Fig. 3!. Thus, due to this motion
an eccentricity of the resultant force with respect to the load c
emerges. As a result, a torsion moment acts on the horizo
bearings, which is counterbalanced by a pair of horizontal forc
reducing the load on the top load cell and increasing the load
the bottom load cell. Also heterogeneity of deformation inside
specimen is expected to contribute to the torsion moment. H
ever, this effect has no influence on the total horizontal fo
Fx

(1)1Fx
(2) , which appears in the expressions for the avera

shear and normal stresses~see Eqs.~9! and ~10!!.
It must be noted that the present experiments are highly rep

able, irrespective of the biaxial loading angle. Very little scatte
observed in the force-displacement curves in Figs. 6 and 7. C
acteristic features of those curves including force extrema or lo
changes in slope are almost identical for different specime
This consistency emphasizes the overall reliability of the pres
experimental procedure including specimen dimensions
preparation.

4 Experimental Observations
Tests are performed on the honeycomb with the UBTD at 0,

30, 40, 50, 60, 70, 80, and 90 deg loading. Large displacem
are applied in the negative y-direction. Recall that from the nat
of the experimental setup, strain paths remain constant throug
each test. In other words, the normal strain is proportional to
shear strain, and the proportionality factor is determined by
biaxial loading angle from the relation«5g tana. All macro-
scopic strain paths are in the quadrant of negative normal str
and negative shear strains. Consequently, all elastic stress s
are in the compression-shear quadrant of the stress space.
ever, under large~compressive! strains, tensile stresses develo
for small loading angles. The generation of tensile stresse
small testing angles may be explained as follows. Consider
total stretchx5A(11«)21g2 that expresses the ratio of curre
to initial length of a fiber initially aligned with the T-direction. W
anticipate that tensile stresses occur ifx.1, and analogously
compressive stresses occur ifx,1. The transition curvex51
along with the various strain paths is plotted in Fig. 8. Accord

Fig. 7 Plots of the horizontal forces measured during tests
under 60 deg loading. Note the two groups of curves: The up-
per and lower groups represent the recording of the horizontal
force in the bottom plate and top plate, respectively.
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to this consideration, tests at loading angles above 45 deg sh
only generate compressive stresses whereas tests at lower lo
angles should exhibit compressive stresses first before te
stresses build up. We therefore split our upcoming discussion
two parts: The first part focuses on the observations made for
at large biaxial loading angles where the stress state is exclus
in the compression-shear quadrant, while the second part
scribes the observations for tests at small loading angles w
tensile stresses emerge at large displacements.

4.1 Compression-Dominated Crushing. Figures 9–11
show the mechanical response curves for large biaxial load
angles. We discuss the results from tests under 60 deg and 80
loading as examples of crushing under compression and s
stresses. A sequence of photographs taken during both tes
shown in Figs. 12 and 13. In the mechanical response curves
corresponding picture points are denoted by symbols labeled
small roman letters. The undeformed specimen configuratio
denoted asa, while successive deforming configurations are d
noted asb, c, d, e, andf, respectively.

First, consider the normal stress-strain curves in Fig. 9. Initia
the compressive stress rises linearly with strain~labeled as elastic
I!, until the response becomes slightly nonlinear as it can be s
from a continuous decrease in slope in the regime labeled as
tic II. Pictures taken at pointb show a pattern of shallow buckle

Fig. 8 Linear strain paths for various biaxial loading angles.
The transition curve labeled xÄ1 cuts the domain into the ex-
pected compression and tension regimes.

Fig. 9 Normal stress-strain curve for large biaxial loading
angles. The corresponding pictures for 60 and 80deg are
shown in Fig. 12 and Fig. 13, respectively.
MAY 2004, Vol. 71 Õ 379
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Fig. 10 Shear stress-strain curve for large biaxial loading
angles. The corresponding pictures for 60 deg are shown in
Fig. 12.

Fig. 11 Shear stress versus normal stress curve for selected
large biaxial loading angles „60,80 deg …
380 Õ Vol. 71, MAY 2004
that developed in the elastic II regime~Figs. 12~b!, 13~b!!. As the
peak stress is overcome~labeled as nucleation!, the compressive
stress steadily drops with strain. This phase denoted as softe
is associated with the stable plastic collapse of the cellular mic
structure under compressive loading. We emphasize that pla
collapse is a stable event as confirmed by the photographs in
18 ~to be discussed in detail later!. Mechanically, this stability is
manifested by the small scatter on the measured nuclea
stresses and the maintaining of a constant stress level when
tests were paused for image acquisition in the softening phase~see
points ‘‘c’’ in Fig. 9!. Observe from the acquired photograp
~Figs. 12~d! and 13~d!! that a characteristic collapse band becom
visible in the honeycomb microstructure throughout the soften
phase. Consequently, we refer to the peak stress as a nucle
stress for collapse bands in the microstructure. For loading an
60, 70, 80, and 90 deg, the compressive stress reaches a
minimum at«*520.056.005 ands*520.66.05 MPa. Then the
compressive stress remains either constant~for 60 deg! or in-
creases to attain a constant plateau level, which is a propert
the crushing regime. The plateau level is initiated at a norma
strain of approximately 2«* .

The shear stress-strain curves show similar characteristics~Fig.
10!. Both the elastic I and elastic II regimes are identifiable bef
a peak shear stress is reached. Furthermore, all the shear s
strain curves exhibit significant softening between the nuclea
point and the local minimum before a stable crushing regime
reached at a more or less constant stress level. However, in
trast to the nature of the compressive stress-strain curves,
minimum shear stress reached at the end of the softening re
varies significantly with the loading angle.

Figure 11 shows the correlation between the normal and s
responses in stress space. Consider the plots for 60 and 80
that describe the mechanical response at large loading angles
sharp turning point in Fig. 11 shows that both the compressive
shear stresses decease almost simultaneously. To be exact
that the loop turns clockwise, which implies that the shear str
decreases before the compressive stress reaches its max
magnitude. The same conclusion is drawn for the next turn
point: The shear stress reaches its minimum~point ‘‘c’’ ! ahead of
the compressive stress~point ‘‘d’’ !. The shaded circle at the end o
the 60 deg curve in Fig. 11 highlights the crushing regime. S
cifically, the center of the shaded circle corresponds to the m
crushing stresses whereas the diameter can be interpreted a
maximum amplitude of fluctuations in stress relative to the me
value in the crushing regime.
Fig. 12 A sequence of photographs of hexagonal aluminum honeycomb during bi-
axial loading at 60 deg angle at different resultant displacements. Note the develop-
ment of collapse bands into plastic folds under load. The measurements next to each
figure represent the magnitudes of the resultant displacement at each picture point.
Transactions of the ASME
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Fig. 13 A sequence of photographs of hexagonal aluminum honeycomb during bi-
axial loading at 80 deg angle at different resultant displacements. Note the develop-
ment of collapse bands into plastic folds under load. The measurements next to each
figure represent the magnitudes of the resultant displacement at each picture point.
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4.2 Tension-Dominated Crushing. The mechanical re-
sponse curves for low biaxial loading angles~0, 10, and 30 deg!
are shown in Figs. 14 and 15. The normal stress-strain curve~Fig.
14! clearly shows that the normal stress changes from the stat
being compressive to that of being tensile at large strains. T
compressive-to-tensile stress transition occurs right from the
ginning of the test under 0 deg loading~note that point ‘‘b’’ lies
above point ‘‘a’’ in Fig. 14!. For 10 and 30 deg loading, th
compressive stress initially increases to a peak value and
decreases with strain as the transition to tensile stressing t
place at larger strains. The increase of the compressive stress
peak value is analogous to the mechanical response at large
ing angles. However, the subsequent softening phase is
bounded by some local minimum because the compressive s
continues to decrease until the normal stress becomes ten

Fig. 14 Normal stress-strain curve for low biaxial loading
angles. Note that all data points 0 deg lie on the ordinate axis.
The corresponding pictures for 0deg and 30 deg are shown in
Fig. 16 and Fig. 17, respectively.
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Thus, the normal stress-strain curves cross the abscissa axi
noting that the tensile stress is generated during crushing at s
loading angles.

Now consider the shear stress-strain curves for small tes
angles~Fig. 15!. Again, we distinguish between the elastic I an
elastic II regimes as the initial response becomes nonlinear
contrast to all the other tests, the shear stress-strain curve for 0
loading does not exhibit a softening regime, but instead it rema
constant first and then increases monotonically until fracture l
its the load carrying capacity of the specimen. At point ‘‘b’’ shear
buckles have formed in the microstructure~Fig. 16~b!!. However,
for x.1 the cell walls aligned in the L-direction are stretche
rather than folded, thereby providing a significant contribution
the shear strength of the microstructure. Fracture of the cell w
occurs in the vicinity of the bond line between the specimen a
the grip ~see ellipse in Fig. 16~ f !!.

The shear stress-strain curve under 30 deg loading is simila

Fig. 15 Shear stress-strain curve for low biaxial loading
angles. The corresponding pictures for 0 and 30 deg are shown
in Fig. 16 and Fig. 17, respectively.
MAY 2004, Vol. 71 Õ 381
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Fig. 16 A sequence of photographs of hexagonal aluminum honeycomb during bi-
axial loading at 0 deg angle at different resultant displacements. The measurements
next to each figure represent the magnitudes of the resultant displacement at each
picture point.
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the response for large loading angles~Fig. 15!. A pronounced peak
stress is observed before a collapse band forms in the softe
regime ~Fig. 17~c!! and the shear stress level remains appro
mately constant in the crushing regime~Fig. 15!. The shear re-
sponse to 10deg loading show combined features of the respo
at small and large loading angles: The shear stress curve sho
peak value and a softening phase similar to large angle testing
it gradually increases without ever reaching a plateau value u
fracture occurs just like during the 0deg testing~Fig. 15!.

5 Honeycomb Plasticity
Here, we propose that the honeycomb equivalence to disl

tion motions in metals is plastic hinge lines. Under combin
2004
ning
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nses
ws a
, but
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ca-
ed

compression and shear loading, plastic hinge lines nucleate, m
and pile up in the cellular honeycomb microstructure. The mec
nisms postulated below apply to the compression-dominated
havior and are supported by the representative photographs
quired from a test performed at 60 deg loading~Figs. 18~a!–~d!!.

Under out-of-plane loading, the elastic membrane stress sta
the initially flat cell walls is that of combined shear and compre
sion ~Kelsey @17#!. The driving force of buckling at the micro
structural level is the principal compressive stress in the thin
walls. Thus, as the local, principal compressive stresses exce
threshold value, elastic buckling of the cell walls occurs~at the
macro level, this is denoted by the transition from elastic I
elastic II regime!. The load distribution within the microstructur
Fig. 17 A sequence of photographs of hexagonal aluminum honeycomb during biax-
ial loading at 30 deg angle at different resultant displacements. The measurements
next to each figure represent the magnitudes of the resultant displacement at each
picture point.
Transactions of the ASME
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Fig. 18 Representative photographs of collapse mechanisms of the compression-
dominated crushing illustrated with the observations made at 60 deg loading
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changes dramatically. With the formation of buckles, the str
state changes in the affected/deflected regions from the memb
stretching-dominated state to the bending-dominated state~Fig.
18~a!!. As a result, the honeycomb loses stiffness at the ma
scopic level, which explains the convex nature of the macrosco
stress-strain curves in the elastic II regime. However, at the s
time, the membrane stresses increase in the immediate vicini
the intersection line between neighboring cell walls, where defl
tions are prohibited. The macroscopic peak load is reached~nucle-
ation! when the membrane stresses at the intersection lines sa
the yield condition of the cell wall material~von Kármán et al.
@18#!. Beyond this point, the buckles no longer disappear up
unloading. Instead, they are ‘‘frozen’’ by the surrounding plas
cally deformed undeflected regions.

Subsequently, the depth of the buckles increases further
loading while the bending deformation becomes plastic and
cuses along theplastic hinge lineswithin the microstructure. At
this stage, the buckles become clearly visible without magnifi
tion. However, the formation of plastic hinge lines is prohibited
the cell wall intersections. We call these intersectionscompatibil-
ity zonesand they are regions where bending is restricted by
requirement of compatibility between the deformation fields of
adjacent cell walls~Fig. 18~b!!. At large macroscopic deforma
tions, the microstructure locally folds along plastic hinge lin
whereas compatibility between neighboring cell walls is achie
at the expense of plastic membrane deformation in the com
ibility zones. We refer to a system of plastic hinge lines and co
patibility zones that allow for the folding of the microstructure
a folding system. Note that among all the evolving plastic hing
lines, only a few contribute to the active folding system~Fig.
18~b!!. A collapse bandmay be seen as a series of active foldi
systems. Figure 18~c! illustrates the localization of microstructura
deformation within collapse bands while the microstructure ab
and below undergoes a rigid body translation. New folding s
tems are set in motion as the cell walls of the active fold
systems contact each other, thereby raising their crushing r
tance beyond the activation threshold for a new collapse b
~Fig. 18~d!!.

Previous work on the crashworthiness of thin-walled structu
~e.g., Wierzbicki and Abramowicz@19#! suggests that the energ
dissipations due to bending along plastic hinge lines and du
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stretching in the compatibility zones are two competing mec
nisms that determine the kinematics of a folding system. Fr
Alexander’s postulate~Alexander@20#!, it follows that the plastic
hinge lines naturally change orientation and move such as to m
mize the overall plastic dissipation in a folding system.

The compatibility zones in the honeycomb microstructure ac
‘‘grain boundaries of a honeycomb.’’ Hinge lines typically end
the compatibility zones~pile up!. At the same time, new hinge
lines are generated in this critical region, thereby activating ot
folding systems. This may be viewed as a reflection of a hin
line. Also note that the compatibility zones are crucial for t
strength of a honeycomb: The bending process along a pla
hinge line alone is almost catastrophic, i.e., the plastic dissipa
per unit displacement decreases dramatically during bending~e.g.,
Wierzbicki and Abramowicz@19#!. However, the compatibility
zones typically exhibit the opposite behavior: the plastic dissi
tion per unit displacement increases as folding proceeds, u
necking, brittle fracture or intracellular delamination limit the loa
carrying capacity of the compatibility zones.

Although the analogy between the folding system in a hon
comb and the slip line system in metals can be made, one fu
mental difference shall be emphasized: The slip line system
metallic crystals are predefined in the undeformed lattice, whe
the folding systems in metallic honeycombs are deformation
duced. In other words, hinge lines nucleate and folding syste
form according to the applied macroscopic deformation field. T
difference is crucial with respect to constitutive modeling, a
poses an exciting challenge for future research. At the same t
it should be noted that the nucleation of folding systems relies
the local plastic collapse of the microstructure and thus, base
von Kármán’s model for the collapse of thin plates~von Kármán
et al. @18#!, it is expected that folding system characteristics su
as the plastic hinge line orientation can be controlled by
choice of the microstructural properties such as the ratio of
wall width to cell wall thickness.

6 Phenomenological Modeling
The focus in this section is on the phenomenological analysi

compression-dominated crushing. This choice is made with p
tical applications in mind: one would expect the honeycomb c
MAY 2004, Vol. 71 Õ 383
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in a sandwich panel to experience largely a combination of co
pressive and shear stresses rather than that of tensile and
stresses. The initial yield envelope defining the onset of pla
collapse in terms of macroscopic stresses is presented. To des
the mechanical response in the crushing regime, we introdu
crushing envelope along with a flow rule.

Honeycomb elasticity as well as the transition from initial co
lapse to the crushing regime~that is, softening! are not addressed
from a phenomenological point of view. We refer to the textbo
by Gibson and Ashby@3# for a description of orthotropic elasticity
of the statistically homogeneous honeycomb microstructure.
der large deformations, however, the elastic moduli evolve~Mohr
and Doyoyo@14#! and most importantly, the elastic material b
havior changes from transverse-orthotropic to full-anisotro
elasticity. In other words, coupling effects between elastic sh
strains and normal stresses and vice versa come into play
require special attention. At the same time, most engineering
plications of honeycomb either exploit its orthotropic elastic b
havior or its crushing behavior, where elastic strains are sma
compared to the total strains and thus negligible. The later a
ment also partially justifies why the phenomenological descript
below does not include the transition from the nucleation en
lope to the crushing envelope. The other argument for omittin
discussion of this transition phase is the lack of experimental
dence. Based on the results from numerical simulations of
honeycomb microstructure under multiaxial loading~Mohr and
Doyoyo @21#! and the honeycomb plasticity presented above,
authors believe that loading path dependency might play a
role on the shape of post-yield envelopes in this transition regi
a property that could not be studied with the present tes
method. This concern also applies to the crushing envelope,
must be tempered since the crushing envelope represents the
over a wide range of individual envelopes in the crushing pha

6.1 Initial Yield Envelope. We ignore irreversible deforma
tion in the honeycomb microstructure prior to collapse and de
the initial yield envelope by the onset of plastic collapse of
honeycomb microstructure. The corresponding collapse stre
are defined by the initial peak stresses of the macroscopic st
strain curves. A plot of the data points found from the pres
experiments is shown in Fig. 19. It appears that an elliptical yi
envelope provides the best description for the onset of pla
collapse:

Fig. 19 Initial collapse and crushing envelopes in stress
space. The square dots are experimental data points. The vec-
tors indicate the direction of plastic flow during crushing,
whereas the dashed straight lines starting from the origin pre-
scribe the direction of plastic flow according to the simplified
flow rule given by Eq. „15….
384 Õ Vol. 71, MAY 2004
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f 0~s,t!5S s

s0
D 2

1S t

t0
D 2

2150. (11)

From a fit of Eq.~11! to the data, we find the yield stress und
uniaxial compressions0522.08 MPa and the shear yield stre
under pure sheart050.76 MPa. It follows from the morphologi-
cal orthotropy of the undeformed microstructure that the init
yield envelope must be symmetric with respect to shear. Howe
Eq. ~11! is only valid for compressive stresses~s<0!. Under ten-
sile stresses, the microstructural deformation mode is expecte
change, which might require a different phenomenological
scription on the macroscopic level.

6.2 Crushing Behavior. In our discussion of the experi
mental observations, the crushing phase is characterized by m
or less constant normal and shear stress levels. We define
crushing stressess̄ and t̄ as means over the respective ener
conjugate strains:

s̄5
1

«max22«* E2«*

«max

sd« (12)

and

t̄5
1

gmax22g* E2g*

gmax

tdg. (13)

The characteristic interval@2«* ,«max# determines the length o
the crushing phase. Based on the experimental results, we su
2«*520.1 and«max520.5. The corresponding shear strain inte
val @2g* ,gmax# is found from the relationg5«/tana. A plot of the
data points (s̄,t̄) is presented in Fig. 19. It appears that und
monotonic loading along a linear strain path the correspond
‘‘crushing envelope’’ is a linear function in the shear stres
normal stress plane:

f c~ s̄,t̄ !5
s̄

s̄0
1U t̄

t̄0
U2150. (14)

The mean stress under uniaxial compression~so-called ‘‘plateau
stress’’! found from a fit to the experimental data iss̄05
21.0 MPa. Again, we restrict the validity of the yield envelope
compressive stresses only, i.e.,s̄<0. Recall that tests at sma
biaxial loading angles developed tensile stresses under l
strains and are thus not considered for the evaluation of
compression-dominated crushing behavior. For instance the m
shear stress,t̄050.53 MPa, is determined from the extrapolatio
of the data in Fig. 19, instead of using the results from the tens
dominated 0 deg tests.

Further analysis of the data~Fig. 19! suggests that the relation
ship between the direction of the inelastic deformation and
location on the crushing envelope may be expressed as foll
~flow rule equivalent!:

d«

dg
>

s̄

t̄
. (15)

Note that for the present experiments along linear strain pa
the left-hand side corresponds to the tangent of the biaxial load
angle, i.e., it represents the direction of the strain resultant in
T-W plane. The right-hand side represents the direction of
corresponding stress resultant. According to Eq.~15!, the strain
and stress resultants are parallel in the crushing regime.

7 Conclusions
A custom-built universal biaxial testing device~UTBD! was

successfully used to perform reliable tests on hexagonal alumi
honeycomb relative to its tubular direction. Based on the exp
mental results, the mechanical response of a honeycomb sand
specimen to combined compressive and shear loading was
lyzed in depth, both at the microstructural and the macrosco
levels. It appeared that deformation-induced folding systems
Transactions of the ASME
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termine the plasticity of the aluminum honeycomb. Folding s
tems nucleate after plastic collapse of the microstructure. They
composed of plastic hinge lines and compatibility zones along
intersection of neighboring cell walls. On the macroscopic lev
an elliptic envelope was suggested to describe the nucleation
cess in the~compressive! normal-shear stress plane. Furthermo
a linear envelope along with a nonassociated flow rule was id
tified in the same plane to define the relationship among the m
normal stress, the mean shear stress and the direction of the
roscopic strain increment.
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The Resistance of Clamped
Sandwich Beams to Shock
Loading
A systematic design procedure has been developed for analyzing the blast resista
clamped sandwich beams. The structural response of the sandwich beam is split into
sequential steps: stage I is the one-dimensional fluid-structure interaction problem d
the blast loading event, and results in a uniform velocity of the outer face sheet; du
stage II the core crushes and the velocities of the faces and core become equaliz
momentum sharing; stage III is the retardation phase over which the beam is broug
rest by plastic bending and stretching. The third-stage analytical procedure is use
obtain the dynamic response of a clamped sandwich beam to an imposed impulse
formance charts for a wide range of sandwich core topologies are constructed for bot
and water blast, with the monolithic beam taken as the reference case. These perfor
charts are used to determine the optimal geometry to maximize blast resistance
given mass of sandwich beam. For the case of water blast, an order of magnitud
provement in blast resistance is achieved by employing sandwich construction, wi
diamond-celled core providing the best blast performance. However, in air blast, s
wich construction gives only a moderate gain in blast resistance compared to mono
construction.@DOI: 10.1115/1.1629109#
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1 Introduction
A major consideration in the design of military vehicles~such

as ships and aircraft! is their resistance to air and water blas
Early work ~at the time of World War II! focused on monolithic
plates, and involved measurement of blast resistance by full s
testing for a limited range of materials and geometries. Sim
analytical models were also developed, such as the o
dimensional fluid-structure interaction model of Taylor@1#.

Over the last decade a number of new core topologies for s
wich panels have emerged, showing structural advantage
monolithic construction for quasi-static loadings. These inclu
metallic foams,@2#, lattice materials of pyramidal and tetrahedr
arrangement,@3#, woven material,@4#, and egg-box,@5#. The cur-
rent study is an attempt to extend and to synthesize analy
models for the dynamic response of clamped beams in orde
optimize the blast resistance of clamped sandwich beams. Exp
comparisons are made between the performance of comp
core concepts.

The clamped sandwich beams, as sketched in Fig. 1, is re
sentative of that used in the design of commercial and milit
vehicles: For example, the outermost structure on a ship c
prizes plates welded to an array of stiffeners. While it is appre
ated that the precise dynamic response of plates is different f
that explored here for beams, the qualitative details will be si
lar, and major simplifications arise from the fact that simple a
lytical formulas can be derived for the beam.

In a parallel study, Xue and Hutchinson@6# have compared the
blast resistance of clamped sandwich beams to that of monol
beams of the same mass via three-dimensional finite element~FE!
simulations. In these FE calculations, Xue and Hutchinson@6#

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 1
2002; final revision, July 10, 2003. Associate Editor: R. M. McMeeking, Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California—Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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modeled the core topologies explicitly but ignored the flu
structure interaction; a prescribed impulse was applied to the o
face of the sandwich beam and was applied uniformly to
monolithic beam. A limited number of FE calculations were p
formed to identify near-optimal sandwich configurations, and
superior blast resistance of sandwich beams compared to th
monolithic beams was demonstrated.

Review of the Characteristics of a Water Blast. The main
characteristics of a shock wave resulting from an underwater
plosion are well established due to a combination of deta
large-scale experiments and modeling over the past 60 years.
ful summaries of the main phenomena are provided by Cole@7#
and Swisdak@8#, and are repeated briefly here in order to under
the current study.

The underwater detonation of a high explosive charge conv
the solid explosive material into gaseous reaction products~on a
time scale,t, of microseconds!. The reaction products are at a
enormous pressure~on the order of GPa!, and this pressure is
transmitted to the surrounding water by the propagation o
spherical shock wave at approximately sonic speed. Conside
response of a representative fluid element at a radial distanr
from the explosion. Upon arrival of the primary shock wave, t
pressure rises to a peak valuepo almost instantaneously. Subse
quently, the pressure decreases at a nearly exponential rate, w
time constantu on the order of milliseconds, and is given b
p(t)5po exp(2t/u). The magnitude of the shock wave peak pre
sure and decay constant depend upon the mass and type of e
sive material and the distancer . After the primary shock wave ha
passed, subsequent secondary shocks are experienced, due
damped oscillation of the gas bubble which contains the explo
reaction products. However, these secondary shock waves
much smaller peak pressures, and are usually much less dam
than the primary shock to a structure in the vicinity of the exp
sion than the primary shock.

Experimental data~and physical models! support the use of
simple power-law scaling relations between the massm of explo-
sive, the separationr between explosion and point of observatio

9,
ion
part-
nta
after
04 by ASME Transactions of the ASME



e

i

e

e

t

t
u
e
o

d

s

the
lso
al
een

e
we
heets
ling
gth
ing
ales

dal

ich
r by
l.
of
and the resulting shock wave characteristics,po and u. For ex-
ample, for an underwater TNT explosion, the peak pressur
taken from Table 2 of Swisdak@8# as

po552.4S m1/3

r D 1.13

MPa, (1)

wherem is in kilograms andr is in meters. Also, the time constan
u is

u50.084m1/3S m1/3

r D 20.23

ms. (2)

These relations have been validated for the domain ofm and r
such thatpo lies in the range 3–140 MPa, see Swisdak@8# for
further details. Similar scaling relations have been obtained
other high explosives, and the coefficients in the above relat
hold to reasonable accuracy for them also.

Next consider the case of a blast wave in air due to the d
nation of a high explosive. Again, a primary shock wave travels
near sonic speed, with an exponential pressure-time history at
fixed location from the explosive. The time constant for the pu
u is similar in magnitude to that in water, but the peak pressur
an order of magnitude lower~see Ashby et al.@2# for a recent
discussion, building upon the work of Smith and Hetheringt
@9#!.

Scope and Motivation of the Study. The main objective of
this study is to develop analytical formulas for characterizing
structural response of a sandwich beam subjected to blast loa
in water or in air. These formulas are of direct practical use
designing laboratory-scale and industrial-scale blast-resis
sandwich beams, including the choice of face sheet and core

First, the relevant mechanical response of candidate core
pologies is reviewed. Second, the dynamic structural response
clamped sandwich beam is analyzed; it is argued that the resp
can be separated into three distinct stages. Stage I is the resp
of the front face sheet to the primary shock wave, including
effects of fluid-structure interaction. Crushing of the core occ
in stage II. And in stage III the sandwich beam is brought to r
by plastic bending and stretching. Third, performance charts f
wide range of sandwich core topologies are constructed for b
air and water blast, with the monolithic beam taken as the re
ence case. These performance charts are used to determin
optimal geometry to maximize blast resistance for a given mas
sandwich beam.

2 Review of Core Topologies
In recent years a number of micro-architectured materials h

been developed for use as the cores of sandwich beams and
els. Here we briefly review the properties of the following can
date cores for application in blast-resistant construction: pyra
dal cores, diamond-celled lattice materials, metal foam
hexagonal-honeycombs and square-honeycombs.

Pyramidal cores, as shown schematically in Fig. 2~a!, are fab-
ricated from sheet-metal by punching a square pattern and the
alternately folding the sheet to produce a corrugated pattern.
core is then bonded to the solid faces by brazing. The pyram
core has an out-of-plane effective modulus~and longitudinal shear
modulus! which scale linearly with the relative densityr̄ of the
core. Provided the struts are sufficiently stocky for the ela

Fig. 1 Geometry of the sandwich beam
Journal of Applied Mechanics
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buckling strength of the struts to exceed their yield strength,
out-of-plane compressive strength of the pyramidal core a
scales linearly withr̄. A detailed discussion on the mechanic
properties of lattice materials such as pyramidal cores has b
given previously by Deshpande and Fleck@3#. For example, the
normal compressive strengthsnY of the pyramidal core with the
struts making an anglev545° with the face sheets is

snY

sY
55 0.5r̄ set by yield, if r̄.

96&eY

p2

p2

96&eY

r̄2, set by elastic buckling, otherwise,

(3)

wheresY andeY are the uniaxial yield strength and strain of th
solid material from which the pyramidal core is made. Here
have assumed that the core struts are pin-jointed to the face s
in order to get a conservative estimate of the elastic buck
strength. The in-plane strength of the pyramidal core in the len
direction of the sandwich beam is governed by the bend
strength of the nodes. Consequently, the in-plane strength sc
asr̄3/2 and at the low relative densities for which these pyrami
cores find application, this strength is negligible,s lY50.

Diamond-celled lattice materialshave the geometry shown in
Fig. 2~b!, and have recently been proposed as cores of sandw
beams. These lattice materials can be manufactured eithe
brazing together wire meshes,@4#, or slotting together sheet meta
With the diamond-like cells aligned along the longitudinal axis
the beam as shown in Fig. 2~b!, these materials provide high

Fig. 2 Sketches of the sandwich core topologies; „a… pyrami-
dal core, „b… diamond-celled core, „c… corrugated core, „d…
hexagonal-honeycomb core, and „e… square-honeycomb core
MAY 2004, Vol. 71 Õ 387
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strengths in both the normal and longitudinal directions of
beam. Typically diamond-cells have a semi-anglev545° and the
core has a normal compressive strength

snY

sY
5H 0.5r̄, set by yield, if r̄.

4A3eY

p
;

p2

96eY
r̄3, set by elastic buckling, otherwise,

(4a)

while the longitudinal strength is given by

s lY

sY
5 r̄. (4b)

Note that the diamond-celled core has identical strength-den
relations to the single layered corrugated core shown in Fig. 2~c!.
However, unlike in a corrugated core, the size of the diamo
cells can be varied independently from the sandwich beam
thickness and hence made as small as required to prevent
kling of the sandwich face sheets.

Metal foamsare random cellular solids with a highly imperfe
microstructure. In most cases they are close to isotropic in ela
plastic properties. The connectivity of neighboring cell edges
sufficiently small for the cell walls to bend under all macrosco
stress states, Ashby et al.@2#. Consequently, the modulus scal
quadratically with relative densityr̄, while the macroscopic yield
strength scales withr̄3/2 according to,@2#,

snY

sY
5

s lY

sY
50.3r̄3/2. (5)

Hexagonal-honeycombsare extensively used as cores of san
wich beams in the configuration sketched in Fig. 2~d!, i.e., with
the out-of-plane direction of the honeycomb aligned along
transverse direction of the beam. Thus, neglecting the ela
buckling of the cell walls we take

snY

sY
5 r̄. (6)

On the other hand, in the longitudinal direction of the bea
hexagonal-honeycomb cores deform by the formation of pla
hinges at the nodes which results in a negligible strength. Thu
practical applications it is reasonable to assumes lY50 for these
honeycombs.

Square-honeycombsas sketched in Fig. 2~e! can be manufac-
tured by slotting together sheet metal. With the square c
aligned parallel to the longitudinal axis of the beam as sketche
Fig. 2~e!, the square-honeycomb core provides high strength
both the normal and longitudinal directions. Neglecting elas
buckling of the cell walls in the normal direction, the normal a
longitudinal strength of the square-honeycomb are given by

snY

sY
5 r̄, and, (7a)

s lY

sY
50.5r̄, (7b)

respectively.
All the cores discussed above have their relative advanta

and disadvantages with regards to properties, ease of manufa
and cost. For the purposes of judging the relative performanc
the cores described above we define an ‘‘ideal’’ core. The ‘‘ide
core has optimal strengths in the normal and longitudinal dir
tions given by

snY

sY
5

s lY

sY
5 r̄. (8)
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This core is 100% efficient in carrying load in both these dire
tions. It is not clear whether such a core is physically realizab
The diamond-celled core with the diamond cells aligned along
longitudinal axis of the beam or a square-honeycomb come c
est to this ‘‘ideal’’ performance.

3 Analytical Models for the Structural Response of a
Clamped Sandwich Beam to Blast Loading

For the sandwich beam, the structural response is split in
sequence of three stages: stage I is the one-dimensional fl
structure interaction problem during the blast event, and result
a uniform velocity being imposed on the outer face sheet; stag
is the phase of core crush, during which the velocities of the fa
and core equalize by momentum transfer; stage III is the reta
tion phase during which the beam is brought to rest by pla
bending and stretching. This analysis is used to calculate the tr
verse displacement~and longitudinal tensile strain accumulate!
of selected sandwich beams as a function of the magnitud
blast loading.

3.1 Order-of-Magnitude Estimate for the Time Scale of
Each Stage of the Dynamic Response.The justification for
splitting the analysis into three distinct stages is the observa
that the time periods for the three phases differ significantly. T
duration of the primary shock for a typical blast wave in air
water due to the detonation of an explosive is of the order of
ms. In contrast, the period for core crush is approximately 0.4
argued as follows. Suppose that a blast wave in water provide
impulse of 104 Nsm22 to a steel sandwich structure, with a 1
mm thick face sheet. Then, the front face acquires an initial
locity vo of 127 ms21. On taking the core to have a thickness
c5100 mm and a densification straineD50.5, the compression
phase lasts foreDc/vo50.39 ms. In contrast, the structural re
sponse time is on the order of 25 ms: this can be demonstrate
considering the dynamic response of a stretched rigid-ideally p
tic string. Consider a string of length 2L, gripped at each end
made from a material of densityr f and uniaxial yield strength
s f Y . Then, the transverse equation of motion for the membr
state is

r f ẅ2s f Y

]2w

]x2 50, (9)

wherew(x,t) is the transverse displacement, the overdot deno
differentiation with respect to timet, andx is the axial coordinate
from one end of the string. For illustrative purposes, assume
string is given an initial velocity profile ẇ(t50)
5ẇo sin(px/2L). Then, the solution of~9! is

w5
2ẇoL

p
A r f

s f Y
sinS p

2L
As f Y

r f
t D sin

px

2L
. (10)

The string attains its maximum displacement and comes to
after a time

T5LA r f

s f Y
. (11)

Now substitute representative values for the case of a steel
hull: L55 m, r f57850 kgm23, and s f Y5300 MPa, givesT
525 ms, as used above.

3.2 Stage I: One-Dimensional Fluid-Structure Interaction
Model. Consider the simplified but conservative idealisation
a plane wave impinging normally and uniformly upon an infin
sandwich plate. For most practical geometries and blast eve
the time scale of the blast is sufficiently brief for the front face
a sandwich panel to behave as a rigid plate of mass per unit
mf . We adopt the one-dimensional analysis of Taylor@1#, and
consider an incoming wave in the fluid of densityrw , traveling
with a constant velocitycw in the direction of increasingx mea-
Transactions of the ASME
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sured perpendicular to the sandwich panel. The origin is take
the front face of the sandwich panel, and the transverse defle
of the face is written asw(t) in terms of time,t. Then, the pres-
sure profile for the incoming wave can be taken as

pI~x,t !5poe2 ~ t2x/cw! /u, (12)

upon making the usual assumption of a blast wave of expone
shape and time constantu ~on the order of 0.1 ms, as discuss
above!. The magnitude of the peak pressurepo is typically in the
range 10–100 MPa, and far exceeds the static collapse pre
for the sandwich plate~typically on the order of 1 MPa!.

If the front face were rigid and fixed in space, the reflect
wave would read

pr1~x,t !5poe2 ~ t1x/cw! /u, (13)

corresponding to perfect reflection of the wave, traveling in
2x direction. But the front face sheet is not fixed: it accelerates
a rigid body with a mass per unit areamf , and moves with a
velocity ẇ(t). Consequently, the fluid elements adjacent to
front face possess the common velocityẇ(t), and a rarefaction
wavepr2 , of magnitude

pr2~x,t !52rwcwẇS t1
x

cw
D , (14)

is radiated from the front face. Thus, the net water pressurep(x,t)
due to the incoming and reflected waves is

p~x,t !5pI1pr11pr25po@e2 ~ t2x/cw! /u1e2 ~ t1x/cw! /u#

2rwcwẇS t1
x

cw
D . (15)

The front face of the sandwich panel~at x50) is accelerated by
the net pressure acting on it, giving the governing ordinary diff
ential equation for face motion as

mfẅ1rwcwẇ52poe2t/u. (16)

Upon imposing the initial conditionsw(0)5ẇ(0)50, and defin-
ing the nondimensional measurec[rwcwu/mf , the solution of
~16! is

w~ t !5
2pou2

mf~c21!c
@~c21!1e2ct/u2ce2t/u#, (17)

and the pressure distribution follows immediately via~15!. In par-
ticular, the pressure on the front face is

p~ t,x50!52poe2t/u2
2poc

c21
@e2t/u2e2ct/u#. (18)

For the case of a liquid containing dissolved gases, the pres
loading on the front face ceases and the liquid cavitates w
p(t,x50)→0, thereby defining the cavitation timetc . Substitu-
tion of this condition into~18! provides the simple relation

tc

u
5

1

c21
ln c, (19)

and the impulse conveyed to the face follows from~17! as

I trans5zI (20a)

where

z[c2 c/c21, (20b)

and I is the maximum achievable impulse given by

I 5E
0

`

2poe2t/udt52pou. (21)

This maximum impulse is only realized for the case of a stati
ary rigid front face. The ratioI trans/I is plotted as a function of the
fluid-structure interaction parameterc in Fig. 3; the transmitted
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impulse decreases substantially with increasingc. It is instructive
to substitute some typical values for air and water blast into re
tions ~19! and ~20b! in order to assess the knock down in tran
mitted impulse and the magnitude of the cavitation time in re
tion to the blast time constantu due to the fluid-structure
interaction. For the case of an air blast, we takerw

51.24 kgm23, cw5330 ms21, u50.1 ms, andmf578 kgm22

for a 10 mm thick steel plate. Hence, we find thatc50.052,
tc /u53.1 andI trans/I'0.85. In contrast, a water blast, we tak
rw51000 kgm23, cw51400 ms21, u50.1 ms, mf578 kgm22;
this implies the valuesc51.79, tc /u50.74 andI trans/I 50.267.
We conclude that a significant reduction in transferred impu
can be achieved by employing a light face sheet for the cas
water blast, while for air blast the large jump in acoustic impe
ance between air and the solid face sheet implies that all prac
designs of solid face sheet behave essentially as a fixed, rigid
with full transmission of the blast impulse. We anticipate th
sandwich panels with light faces can be designed to ensure
reduced transmission of impulse from an incoming water b
wave.

In summary, the first phase of the analysis comprises the ac
eration of the front face to a velocityvo by the incoming~and
reflected! primary shock wave. The core and back face of t
sandwich beam remain stationary during this initial stage. It
instructive to obtain order of magnitude estimates for the ini
velocity of the front face, and its deflection at timet5tc . For an
impulse of magnitude 103 Nsm22 in air, and 104 Nsm22 in water,
the acquired velocity of the front face is approximately 13 ms21

for the air blast, and 34 ms21 for the water blast~steel face sheet
of thickness 10mm!. Relation~17! reveals that the lateral deflec
tion of the front face is 2.5 mm for the air blast and 1.83 mm
the water blast. It is expected that sandwich beams for ship ap
cation will be of core thicknessc of order 0.1–1.0 m, and so th
degree of core compression during the initial phase of blast lo
ing is negligible.

Taylor @1# has modeled the influence of structural support to
dynamic response of the face sheet by adding the termkw to ~16!,
corresponding to a uniformly distributed restraining force of ma
nitudekw giving

mfẅ1rwcwẇ1kw52poe2t/u. (22)

The physical interpretation is thatk denotes the structural stiffnes
due to an array of supports between the face sheet and the u
lying, motionless structure. By solving~22!, and considering rep-
resentative values fork for the case of a steel plate on a sh

Fig. 3 The ratio of the impulse transmitted to the struc-
ture Itrans , and the impulse transmitted to a fixed rigid
structure 2 p ou, as a function of the fluid-structure interaction
parameter c
MAY 2004, Vol. 71 Õ 389
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superstructure, Taylor demonstrated that the stiffness term ca
neglected with little attendant loss of accuracy. The main ob
tive of the current study is to compare the relative performanc
various sandwich panel configurations, and so the simpli
analysis is adequate for our purposes.

3.3 Stage II: One-Dimensional Model of Core Compres-
sion Phase. In the second phase of motion it is envisaged t
the core is crushed by the advancing outer face sheet, and c
quently the outer face sheet is decelerated by the core while
core and the rear face of the sandwich beam are accelerated
simplicity, we consider a one-dimensional slice through the thi
ness of the sandwich beam and neglect the reduction in mom
tum due to the impulse provided by the supports. This appro
mation is motivated by noting that the time period of this phas
much smaller than the overall structural response time of
structure. Subsequent retardation of the sandwich beam is du
plastic bending and stretching in Stage III of the motion. Detai
finite element calculations carried out recently by Qiu et al.@10#
support this assertion. The core is treated as a rigid, ideally pla
crushable solid with a nominal crush strengthsnY up to a nominal
densification straineD . After densification has been achieved, it
assumed that the core is rigid.

Overall considerations of energy and momentum conserva
can be used to determine the final value of core compressive s
ec(<eD) and the final common velocityv f of faces and core a
the end of the core crush stage. The quantitiesec andv f suffice to
proceed with the third stage of analysis to calculate the be
deflection. However, if additional information on the core cru
phase is to be obtained, such as the time for core crushTc , a
one-dimensional plastic shock wave analysis is required. First
present the immediate results forec andv f , and then we outline
the shock wave analysis in order to obtainTc .

Momentum conservation during core crush dictates that

~2mf1rcc!v f5mfvo , (23)

and so a direct relation exists between the common velocity of
sandwich beamv f after core crush and the initial velocity of th
outer face,vo . The ratio of the energy lostU lost in this phase to
the initial kinetic energy of the outer face sheet is then given

U lost

mfvo
2/2

5
11 r̂

21 r̂
(24)

where r̂5rcc/mf . This loss in energy is dissipated by plast
dissipation in compressing the core and thus we equate

U lost5snYecc, (25)

whereec is the average compressive strain in the core. Combin
the two above relation, the core compression strainec is given by

ec5
eD

2

r̂11

r̂12
Î 2, (26)

in terms of the dimensionless parameterÎ 5I trans/AmfcsnYeD.
However, ifU lost is too high such thatec as given by~26! exceeds
the densification straineD , then ec is set to the valueeD and
additional dissipation mechanisms must occur for energy con
vation. The above analysis neglects any such additional me
nisms. FE calculations by Xue and Hutchinson@6# and Qiu et al.
@10# reveal that the additional mechanism are tensile stretchin
the outer face near the supports together with additional crus
of the core under sharply increasing stress.

Now a word of warning. The Stage II analysis neglects
impulse provided by the support reactions during the core c
pression phase. This assumption breaks down for stubby be
subjected to large impulses; the quality of the approximation
analyzed in detail by Qiu et al.@10# via a set of dynamic finite
element calculations.
390 Õ Vol. 71, MAY 2004
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Plastic Shock-Wave Analysis.The above analysis assume
that the core compresses uniformly through its thickness at c
stant stress. In reality, the core can compress nonuniformly du
buckling of strut elements within the core and due to inertial
fects. Here, we consider the case of a core which contains a
ficiently large number of microstructural units~the cells of a metal
foam, or the units of a diamond-celled core! for it to be repre-
sented by a porous solid. However, the role of inertia is includ
and a plastic shock wave analysis is performed in order to ded
the spatial and temporal evolution of strain within the core.

Consider a sandwich structure, with face sheets of mass per
areamf , and a core of initial thicknessc and relative densityrc .
The front face sheet has an initial velocityvo , while the core and
inner face sheet are initially at rest. As assumed above, we c
sider a one-dimensional problem as sketched in Fig. 4~a! with the
core treated as a rigid, ideally plastic solid with a nominal cru
strengthsnY up to a nominal densification straineD ; at densifi-
cation the core locks up and becomes rigid. After impact of t
front face sheet upon the core, a plastic shock wave mo
through the core at a velocitycpl . Suppose that the shock wav
has advanced by a distanceX after a time t has elapsed, as
sketched in Fig. 4~a!. Upstream of the shock wave, the und
formed core and rear face of sandwich beam have a velocityvu ,
whilst downstream of the shock wave the core has compacte
the densification straineD and shares the velocityvd with the
front face. The propagation behavior of the shock wave can
determined by numerical integration as follows.

Conservation of momentum dictates

@mf1rc~c2X!#vu1@mf1rcX#vd5mfvo , (27)

while energy conservation states

Fig. 4 „a… Sketch of the propagation of a one-dimensional
shock in the sandwich core, „b… the nondimensional core com-
pression time T̂c as a function of the nondimensional impulse Î
transmitted to the structure
Transactions of the ASME
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2
mfvo

25
1

2
@mf1rc~c2X!#vu

21
1

2
@mf1rcX#vd

21snYeDX,

(28)

and mass conservation across the shock wave provides

cpleD5vd2vu . (29)

Now the compressive stress on the upstream face of the s
wave is related directly to the mass and acceleration of upstr
material, giving

su5@mf1rc~c2X!#v̇u , (30)

and a similar relation holds for the compressive stress on
downstream face of the shock wave,

sd52@mf1rcX#v̇d . (31)

Time differentiation of ~27! and the elimination of (v̇u ,v̇d)
from the resulting expression via~30! and ~31! leads to the well-
known statement of momentum conservation across the sh
wave,

su2sd5rccpl~vu2vd!. (32)

As the shock wave progresses through the core it slows do
and, for a sufficiently low initial value of front face velocityvo ,
the shock wave arrests at a travelXc less than the core thicknes
c. Upon noting thatẊ5cpl the crush timeTc is calculated via
~29! to give

Tc5E
0

Xc dX

cpl
5E

0

Xc eD

vd2vu
dX. (33)

Now (vd2vu) can be expressed as a function ofX via ~27! and
~28!, and ~33! thereby integrated numerically in order to obta
the core crush time,Tc . The integral reads in nondimension
form,

T̂c5
Tcvo

eDc
5E

0

X̄c 1

v̄d2 v̄u
dX̄, (34)

where X̄[X/c, X̄c[Xc /c5ec /eD , as specified by~26!, v̄d
[vd /vo and v̄u[vu /vo . In the above relationv̄d2 v̄u depends
upon X̄ according to

~ v̄d2 v̄u!25
11 r̂~22X̄!1 r̂2~12X̄!

@11 r̂~12X̄!#2~11 r̂X̄!

2
2~21 r̂ !r̂X̄

@11 r̂~12X̄!#~11 r̂X̄! Î 2
. (35)

For the caseX̄[X/c,1, T̂c is calculated as a function ofÎ by
evaluating~34!, with (v̄d2 v̄u) expressed by~35!, and the upper
limit of integration X̄c5ec /eD expressed in terms ofÎ via ~26!.
However, at sufficiently high values of impulseÎ , the plastic
shock wave traverses the thickness of the corec without arrest.
The period of core compression is again specified by~34!, with
( v̄d2 v̄u) expressed by~35!, and the upper limit of integration
X̄c51.1 At the transition valueÎ t , the shock wave arrests at th
same instant that it traverses the core thickness;Î t is obtained by
equatingec to eD in ~26!, to give

Î t
25

2~ r̂12!

r̂11
. (36)

It is noted in passing thatÎ t is only mildly sensitive to the mag
nitude of the mass ratior̂: asr̂ is increased from zero~negligible
core mass! to infinity ~negligible face sheet mass!, Î decreases

1Note that in such cases the above analysis conserves momentum but do
account for the additional dissipation mechanisms required to conserve energy
Journal of Applied Mechanics
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from 2 to&. Thus, it is predicted that the plastic shock wave w
arrest before it traverses the core providedÎ is less than& for all
ratios of core to face sheet mass.

The dependence ofT̂c5Tcvo /eDc on Î is shown in Fig. 4~b!
for selected values ofr̂. It is clear from the figure thatT̂c in-
creases from zero to a peak value asÎ increases from zero to the
transition valueÎ t . At higher values ofÎ , T̂c decreases: at very
large values ofÎ , T̂c approached a finite asymptote which equa
unity for the caser̂50. It is assumed that the core becomes rig
after it has densified, and the core and face sheet velocities ins
taneously jump in value tov f at T̂5T̂c .

Simple analytical expressions for the dependence ofT̂c upon Î
can be obtained in the limiting case of a negligible core massr̂
→0. Consider first the case where the impulse is sufficiently sm
for the core to compress by a strainec less than the densification
valueeD . Then, the core provides a constant compression st
snY upon the front and back face sheets, so that the front face
the velocity

vd5vo2
snYt

mf
, (37)

while the rear face has the velocity

vu5
snYt

mf
. (38)

The core compression timeTc is obtained by equatingvd andvu ,
to obtain

T̂c5
Î 2

2
. (39)

Continuing with the choicer̂→0, now address the case whe
the impulse exceeds the transition valueÎ t52, so that the core
densifies before the front and rear-face sheet velocities h
equalized tovo/2, as demanded by momentum conservation. T
core compression time is set by the time for the face sheet
undergo a relative approach ofeDc. Upon noting that the front
face sheet displaces by

sd5vot2
snY

2mf
t2, (40)

while the back face sheet displaces by

su5
snY

2mf
t2, (41)

the core compression timeTc is determined by the condition

sd2su5voTc2
snY

mf
Tc

25eDc. (42)

with solution

T̂c[
Tcvo

eDc
5

Î

2
@ Î 2AÎ 224#. (43)

3.4 Stage III: Dynamic Structural Response of Clamped
Sandwich Beam. At the end of stage II the core and face she
have a uniform velocityv f as dictated by~23!. The final stage of
sandwich response comprises the dissipation of the kinetic en
acquired by the beam during stages I and II by a combination
beam bending and longitudinal stretching. The problem un
consideration is a classical one: what is the dynamic response
clamped beam of length 2L made from a rigid ideally-plastic
material with mass per unit lengthm subjected to an initial uni-
form transverse velocityv f? This problem has been investigate
by a number of researchers. In particular, Symmonds@11# devel-
oped analytical solutions based on a small displacement ana
while Jones@12# developed an approximate method for large d

s not
MAY 2004, Vol. 71 Õ 391
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Fig. 5 Analysis of stage III of the blast response. „a… Velocity profile in phase I, „b… a free-body
diagram of the half-beam in phase I, with the deflected shape sketched approximately, „c…
velocity profile in phase II, and „d… a free-body diagram of the half-beam in phase II, with the
deflected shape sketched approximately. The accelerations of the beam are shown in „d….
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placements using an energy balance method. These method
summarized in Jones@13#. Here we present an approximate sol
tion that is valid in both the small and large displacement regim
it reduces to the exact small displacement solution of Symmo
@11# for small v f and is nearly equal to the approximate lar
deflection solution of Jones@13# for largev f .

Active plastic straining in the beam is by a combination
plastic bending and longitudinal stretching with shear yield
neglected: An evaluation of the magnitude of the transient sh
force within the face sheet in the dynamic clamped beam ca
lation of Jones@13# reveals that shear yielding is expected only f
unrealistic blast pressures as discussed above. We assum
yield of an beam element is described by the resultant longitud
force N and the bending momentM . The shape of the yield sur
face in (N,M ) space for a sandwich beam depends on the sh
of the cross section and the relative strength and thickness o
faces and the core. A yield locus described by

uM u
Mo

1
uNu
No

51, (44)

whereNo andMo are the plastic values of the longitudinal forc
and bending moment, respectively, is highly accurate for a sa
wich beam with thin, strong faces and a thick, weak core. It
comes less accurate as the beam section approached the m
lithic limit. It is difficult to obtain a simple closed-form analytica
solution for the dynamic beam response with this choice of yi
surface. Here, we approximate this yield locus to be a circu
scribing square such that

uNu5No (45a)

uM u5Mo , (45b)

with yield achieved when one or both of these relations are sa
fied. We could equally well approximate the yield locus to be
inscribing square such that

uNu50.5No (46a)

uM u50.5Mo , (46b)

with again at yield one or both of these relations satisfied. Jo
@13# has explored the choice of circumscribing and inscrib
yield surfaces for a monolithic beam and shown that the resul
solutions bound the exact response. We proceed to develop
analysis for the circumscribing yield locus: the corresponding f
mulas for the inscribed locus may be obtained by replacingMo by
0.5Mo andNo by 0.5No .
MAY 2004
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In the dynamic analysis we shall assume that displacem
occur only in a direction transverse to the original axis of t
beam and thus stretching is a result of only transverse displ
ments. Moderate transverse deflections are considered, such
the deflectionw at the mid-span of the beam is assumed to
small compared to the beam length 2L and the longitudinal force
N5No can be assumed to be constant along the beam. The mo
of the beam can be separated into two phases as in the s
displacement analysis of Symmonds@11#. In phase I, the centra
portion of the beam translates at the initial velocityv f while seg-
ments of lengthj at each end rotate about the supports. The be
ing moment is taken to vary from2Mo at the outer stationary
plastic hinges at the supports to1Mo at ends of the segments o
length j with the bending moment constant in the central fl
portion. Thus, time increments in curvature occur only at the e
of the rotating segments while axial straining is distributed o
the length of the rotating segments. A free-body diagram for h
of the clamped beam is shown in Fig. 5~b!; conservation of the
moment of momentum about a fixed end after a timet gives

~mLv f !
L

2
5m~L2j!v f S j1

L2j

2 D12Mot1
1

2
Nov f t

2

1E
0

j mv fx
2

j
dx, (47)

where x is the axial coordinate from one end of the beam,
shown in Fig. 5~b!. This equation givesj as a function of timet

j5A3t~v fNot14Mo!

mv f
. (48)

Phase I continues until the traveling hinges at the inner end
the segments of lengthj coalesce at the midspan, i.e.,j5L. Thus,
from ~48!, phase I ends at a timeT1

T15
Mo

Nov f
FA41

mL2v f
2No

3Mo
2 22G , (49)

and the displacement of the mid-spanw1 at this time is given by

w15v fT15
Mo

No
FA41

mL2v f
2No

3Mo
2 22G . (50)

In phase II of the motion, stationary plastic hinges exist at
midspan and at the ends of the beam, with the moment vary
between2Mo at the beam end to1Mo at the midspan. The
Transactions of the ASME
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velocity profile is triangular, as sketched in Fig. 5~c!. The equation
of motion of the half-beam in phase II follows from the free-bo
diagram sketched in Fig. 5~d! as

2Mo1Now52
ẅ

L E
0

L

mx2dx52
mL2

3
ẅ, (51)

where x is the axial coordinate from one end of the beam
shown in Fig. 5~d!. With initial conditions w(T1)5w1 and
ẇ(T1)5v f , this differential equation admits a solution of th
form

w~ t !5
v f

v
sin@v~ t2T1!#1S 2Mo

No
1w1D cos@v~ t2T1!#2

2Mo

No
,

(52a)

where

v5
1

L
A3No

m
. (52b)

The maximum deflectionw of the midspan of the beam occurs
a timeT when ẇ(T)50. Upon substituting this termination con
dition in the velocity equation, as given by the time derivative
~52a!, the response timeT is obtained as

T5T11
1

v
tan21F Nov f

v~2Mo1w1No!G , (53)

and the corresponding maximum deflection of the midspan of
beam is

w5Av f
2

v2 1S 2Mo

No
1w1D 2

2
2Mo

No
. (54)

The deflected shape of the beam can be obtained using the p
dure detailed on p. 81 of Jones@13# but the derivation and resul
are omitted here as they are not central to the present discus

We specialize this analysis to the case of sandwich beams.
call that we are considering clamped sandwich beams of spanL
with identical face sheets of thicknessh and a core of thicknessc,
as shown in Fig. 1. The face sheets are made from a rigid ide
plastic material of yield strengths f Y and densityr f , while the
core of densityrc has a normal compressive strengthsnY and a
longitudinal strengths lY . The plastic bending moment of th
sandwich beam with the compressed core is given by

Mo5s lY

~12ec!c
2

4
1s f Yh@~12ec!c1h#, (55)

while the plastic membrane forceNo is given by

No52s f Yh1s lYc. (56)

For simplicity we assume that the plastic membrane forceNo
due to the core is unaffected by the degree of core compres
while this assumption is thought to be reasonable for all the co
considered, it requires experimental verification. We now int
duce the nondimensional geometric variables of the sandw
beam

c̄[
c

L
, h̄[

h

c
, ĉ[ c̄~12ec!, and ĥ[

h̄

12ec
, (57)

and the nondimensional core properties

r̄[
rc

r f
, s̄ l[

s lY

s f Y
and s̄n[

snY

s f Y
. (58)

The nondimensional structural response timeT̄ and blast impulse
Ī are

T̄[
T

L
As f Y

r f
, Ī [

I

LAr fs f Y

[
Î c̄As̄neDh̄

z
, (59)
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wherezI is the blast impulse transmitted to the structure by
fluid. Consequently, the response timeT, as given by~53!, can be
rewritten in the nondimensional form as

T̄5
a2

2

c̄~2h̄1 r̄ !

Ī z
FA11

4 Ī 2z2a3

3a1a2

21G
1A c̄~2h̄1 r̄ !

3ĉ~2ĥ1s̄ l c̄/ ĉ!
tan21F4 Ī zA a3

3a1a214 Ī 2z2a3
G ,

(60)

where

a15 ĉ3@~112ĥ!2211s̄ l c̄/ ĉ#~112ĥ!c̄~ r̄12h̄!, (61a)

a25
ĉ@~112ĥ!2211s̄ l c̄/ ĉ#

2ĥ1s̄ l c̄/ ĉ
, and (61b)

a35 ĉ~112ĥ!. (61c)

The maximum defection~54! of the inner and outer faces at th
midspan can be written nondimensionally as

w̄[
w

L
5

a2

2
FA11

8 Ī 2z2a3

3a1a2
21G , (62a)

and

w̄o5w̄1ecc̄, (62b)

respectively. It is emphasized that the deflection of the inner f
of the sandwich beam is due to only stage III of the deformat
history, while the deflection of the outer face is the sum of t
deflections in stage III and the deflection due to core compres
in stage II.

It is difficult to give a precise failure criterion for the beam as
is anticipated that the blast impulse for incipient failure is sen
tive to the details of the built-in end conditions of the clamp
beams. Here, we state a failure criterion based on an estima
the tensile strain in the face sheets due to stretching of the b
and neglect the tensile strains due to bending at the plastic hin
The tensile strainem in the face sheets due to stretching is a
proximately equal to

em5
1

2 S w

L D 2

. (63)

By setting this strainem to equal the tensile ductilitye f of the face
sheet material, an expression is obtained for the maximum no
mensional impulseĪ c that the sandwich beam can sustain witho
tensile failure of the face sheets; substitution of~63! into ~62a!,
with the choiceem5e f , gives

Ī c5
1

z
A3a1a2

8a3
F S 2A2e f

a2

11D 2

21G . (64)

The above analysis, comprising stages I, II, and III for the
sponse of a clamped sandwich beam to blast loading, gives
deflectionw̄, response timeT̄, the core compressionec and the
maximum tensile strainem in the sandwich beam in terms of

i. the loading parameters as specified by the blast impulsĪ ,
and the fluid-structure interaction parameterc,

ii. the beam geometryc̄ and h̄, and
iii. the core properties as given by the core relative densityr̄,

its longitudinal tensile strengths̄ l , compressive strengths̄n
and its densification straineD .

We proceed to illustrate graphically the functional depende
of w̄, T̄, ec , andem on the blast impulseĪ . Consider a represen
MAY 2004, Vol. 71 Õ 393
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tative sandwich beam withc̄5h̄50.1 and comprising a pyramida
core of relative densityr̄50.1 made from the same solid materi
as the face sheets~with eY50.2%). As specified in Section 2, th
core yields rather than elastically buckles, and the normal
longitudinal strengths of this pyramidal core ares̄n50.05 and
s̄ l50, respectively. The densification strain of the core is taken
eD50.5. To complete the specification, we assume a flu
structure interaction parameterc51.79 which is representative o
an underwater blast with a time constantu50.1 ms and 10 mm
thick steel faces as discussed in Section 3.1. The normalized
flection w̄ of the inner face of the sandwich beam and respo
time T̄ are plotted in Fig. 6~a! as a function of the normalized
blast impulse while the compressionec and tensile stretchem are
plotted in Fig. 6~b!. For Ī ,0.03, the compressive strainec in-
duced in the core in Stage II is less thaneD and w̄ increases
approximately quadratically withĪ . At higher impulses the core
compression is fixed at the densification limiteD and w̄ scales
approximately linearly withĪ . On the other hand, the structur
response time initially increases linearly withĪ , but at high im-
pulses the beam behaves as a stretched plastic string andT̄ is
almost independent of the magnitude ofĪ .

4 Performance Charts for Water Blast Resistance
The analysis detailed above is now used to investigate the

tive response of monolithic and sandwich beams to blast load

Fig. 6 Response of a clamped sandwich beam „ c̄Ä0.1,h̄
Ä0.1… with a pyramidal core „r̄Ä0.1,eYÄ0.002,eDÄ0.5… for an
assumed cÄ1.78; „a… the normalized response time T̄ and de-
flection w̄ and „b… core compression ec , and tensile strain in
beam em , as a function of the normalized blast impulse Ī
394 Õ Vol. 71, MAY 2004
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In a typical design scenario, the solid material and length of
structural element are dictated by design constraints such as
rosion resistance and bulkhead spacing, thus leaving the sand
panel geometry, viz. the face sheet and core thickness, and
relative density and topology, as the free design variables. T
design problems will be addressed:

1. For a given material combination, beam length and b
impulse, what is the relation between sandwich geome
and the inner face sheet deflection?

2. For a given material combination, beam length and allo
able inner face sheet deflection, what is the relation betw
the required sandwich geometry and the level of blast
pulse?

4.1 Monolithic Beams. As a reference case we first prese
the response of a monolithic beam subjected to a water b
Consider a monolithic beam of thicknessh and length 2L made
from a rigid-ideally plastic solid material of densityr f and yield
strengths f Y subjected to a blast impulseI .

We define a fluid-structure interaction parameterc̄

c̄5c
h

L
5

rwcwu

r fL
, (65)

which is closely related to the Taylor@1# fluid-structure interaction
parameterc but written in terms of the specified beam length. T
impulse I trans transmitted to the beam is given by~20b! for a
specified value ofc̄ and a known beam geometryh/L.

First, we specialize the analysis of Section 3.4 to the case
monolithic beam with plastic momentMo5Noh/4, where No
5hs f Y is the plastic membrane force. The nondimensional ma
mum deflection of the midspan of the beamw̄5w/L and normal-
ized structural response timeT̄[T/LAr f /s fY follow from ~54!
and ~53!, respectively, as

w̄5
h

2L
FA11

8 Ī 2z2

3 S L

hD 4

21G and (66a)

T̄5
1

2 Ī z
S h

L
D 2FA11

4

3
Ī 2z2S L

h
D 4

21G
1

1

)
tan21F 2 Ī z~L/h!2

A314 Ī 2z2~L/h!4
G , (66b)

where zI is the impulse transmitted into the structure. Forz Ī
!1, the above relations reduce to

w̄5
2

3
Ī 2z2S L

hD 3

(67)

T̄5 Ī zS L

hD 2

, (68)

which are identical to the small deflection predictions of Sy
monds@11#.

With the tensile strain in the beam given by~63!, the maximum
impulseĪ c sustained by a monolithic beam made from material
tensile ductilitye f is

Ī c5
1

z
A3

8 S h

L D 2F S 2A2e f S L

hD11D 2

21G . (69)

A representative design chart is now constructed for a monoli
beam subjected to a water blast. Consider a steel beam of le
2L510 m subjected to a blast with a decay timeu50.12 ms. The
Transactions of the ASME



g
-
t

t

a

t

h

n

h

e

ra-
-

el

last
um
l

fluid-structure interaction parameterc̄ then takes the valuec̄55
31023. Contours of nondimensional deflectionw̄ are plotted in
Fig. 7 as a function of the normalized blast impulseĪ and beam
geometry,h/L, for c̄5531023. Note that the contours of thew̄
have been truncated at high impulses due to tensile tearin
dictated by~69!, with the choicee f50.2. Contours of nondimen
sional massM̄5M /(L2r f)52h/L, whereM is the mass per uni
width of the beam, have also been added to the figure. As
pected, the beam deflection increases increasing with blast
pulse, for a beam of given mass.

4.2 Sandwich Beams. The blast response of clamped san
wich beams, comprising solid faces and the five types of co
discussed in Section 2, will be analyzed in this section. We res
attention to cores made from the same solid material as the s
face sheets in order to reduce the number of independent no
mensional groups by one. With the sandwich beam length
material combination specified, the design variables in the pr
lem are the nondimensional core thicknessc̄[c/L and face shee
thicknessh̄[h/c.

Figure 8 shows a design chart with axesc̄ andh̄ for a clamped
sandwich beam with a pyramidal core (r̄50.1, eY50.002) and
subjected to a normalized blast impulseĪ 51022. The fluid-
structure interaction parameter is again taken asc̄5531023; this
is representative for steel sandwich beams of length 2L510 m
subject to a water blast with a decay constantu50.12 ms. Further,
the densification straineD of the core is assumed to be 0.5 and t
tensile ductility of the solid steel is taken ase f50.2. Contours of
nondimensional maximum deflection of the mid-span of the in
face of the beam and contours of the compressive strainec in the
core have been added to the chart: bothw̄ and ec increase with
decreasingc̄ and beam failure by tensile tearing of the face she
is evident at the top left-hand corner of the chart.

The effect of the fluid-structure interaction parameterc̄ upon
the likelihood of tensile failure of the above sandwich beam
shown in Fig. 9. The figure shows the regime of tensile failure
the face sheets on a design chart with axes (c̄,h̄). Apart from the
choice ofc̄, the nondimensional parameters are the same as t
used to construct Fig. 8:r̄50.1 andeD50.5 for the pyramidal
core,e f50.2 for the faces andĪ 51022. With increasing values of

Fig. 7 Design chart for a monolithic beam of tensile ductility
e fÄ0.2, subjected to a water blast with c̄Ä5Ã10À3. Contours
of the midspan displacement w̄ are given as solid lines and
contours of dimensionless mass M̄ are shown as dotted lines.
Journal of Applied Mechanics
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c̄ ~associated with shorter spans, 2L, and with longer values of
the decay constantu!, tensile failure is less likely. Thus, tensil
failure is unlikely to occur for sandwich beams providedc̄ ex-
ceeds approximately 0.02.

The inverse design problem of the relation between the py
midal core (r̄50.1, eY50.002,eD50.5) sandwich beam geom
etry and the blast impulse for a specified deflectionw̄50.1 and for
c̄5531023 is addressed in Fig. 10. Tensile failure of the ste
faces (e f50.2) is inactive for the choicew̄50.1. For the purposes
of selecting sandwich beam geometries that maximise the b
impulse at a given mass subject to the constraint of a maxim
allowable inner face deflectionw̄, contours of non-dimensiona
massM̄ have been added to Fig. 10, where

Fig. 8 Design chart for a sandwich beam, with a pyramidal
core „r̄Ä0.1,eYÄ0.002,eDÄ0.5…, subjected to a water blast. The
nondimensional impulse is ĪÄ10À2, and the fluid-structure in-
teraction parameter is taken as c̄Ä5Ã10À3. The regime of ten-
sile failure is shown for an assumed tensile ductility of face
sheets of e fÄ0.2. Contours of w̄ and ec are included.

Fig. 9 The effect of c̄ upon the magnitude of the tensile failure
regime within the design chart, for face sheets of ductility e f
Ä0.2. The sandwich beam has a pyramidal core „r̄Ä0.1,eY
Ä0.002,eDÄ0.5… and the nondimensional impulse is taken as
ĪÄ10À2.
MAY 2004, Vol. 71 Õ 395
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M̄5
M

r fL
2 52~2h̄c̄1 c̄r̄ !, (70)

and M is the mass per unit width of the sandwich beam. T
figure reveals that geometries that maximize the blast impulsĪ
for a given massM̄ haveh̄→0 at almost constantc̄, implying that
h/L→0. The physical interpretation is as follows. With decreas
face sheet thickness~or face sheet mass! the blast impulse trans
mitted to the structure reduces: The Taylor analysis givesĪ trans
→0 ash→0. This limit is practically unrealistic as a minimum
face sheet thickness is required for other reasons, for examp
withstand wave loading, quasi-static indentation by foreign
jects such as rocks and other vessels and fragment capture
blast event. Consequently, we add the additional constraint
minimum normalized face sheet thicknessh/L into the analysis.
Contours ofh/L for two selected values ofh/L have been added
to Fig. 10. These lines represent limits on acceptable sandw
beam designs, with designs lying above these lines satisfying
constraint onh/L: designs that maximize blast impulse for
given mass then lie along the lines of constanth/L.

The maximum blast impulse sustained by the sandwich be
with the five different topologies of the core~but r̄50.1, eY
50.002 andeD50.5 in all cases!, subject to the constraintsh/L
.1022 and the inner face deflectionw̄<0.1 are plotted in Fig. 11
as a function of the nondimensional massM̄ for the choicec̄
5531023. For comparison purposes, the blast impulse susta
by a monolithic beam subjected to the same constraints is
included in Fig. 11. It is evident that sandwich beams all perfo
considerably better than the monolithic beam. This is mainly d
to the fact that the sandwich beams have a thin outer face s
which results in a small impulse transmitted into the struct
whereas the relatively thick beams in monolithic design abso
larger fraction of the blast impulse. A comparison of the vario
sandwich cores shows that sandwich beams with a metal foam
pyramidal core almost attain the performance of the hexago
honeycomb core. However, the diamond-celled and squ
honeycomb core beams, which have high strength in both
through-thickness and longitudinal directions, out perform
other sandwich beams. The performance of the diamond-ce
core approaches that of the ‘‘ideal’’ sandwich core. It is noted t
M̄ has minimum achievable values. This is explained as follo
Sinceh/L[h̄c̄, the expression~70! for M̄ can be rewritten as

Fig. 10 Design chart for a sandwich beam, with a pyramidal
core „r̄Ä0.1,eYÄ0.002,eDÄ0.5…, subjected to a water blast. The
beam deflection is w̄Ä0.1 and the fluid-structure interaction pa-
rameter is taken as c̄Ä5Ã10À3. Contours of Ī and M̄ are dis-
played. The dotted lines trace the paths of selected values of
h ÕL .
396 Õ Vol. 71, MAY 2004
he
e

ng

e to
b-
in a
f a

ich
the
a

ms

ned
lso

rm
ue
heet
re
b a
us
and
al-
re-
the
he
lled
at
s.

M̄54
h

L
12c̄r̄. (71)

The above constraint on the minimumh/L implies a minimum
value forM̄ of 4h/L. Thus, for the constrainth/L>1022, M̄ has
the minimum value of 0.04 as evident in Fig. 11. Similarly, for
monolithic beam of thicknessh, M̄ is given byM̄52h/L and so
a constraint on the minimum value ofh/L gives directly a mini-
mum acceptable massM̄ . With increasing values of thec̄, the
fraction of the blast impulse transmitted into the structure
creases and thus all the beams sustain higher blast. Howeve
relative performance of the various beam configurations rem
unchanged.

The effect of the constraint onh/L on the performance of the
above sandwich beams is illustrated in Fig. 12 for the choicec̄
5531023. As the allowable minimum value ofh/L decreases
from 1022 to 1023, the blast impulses sustained by the sandw
beams increase. Further, the rankings of the cores change slig
while the diamond-celled core still performs the best followed
the square-honeycomb core, the metal foam core is now see
out perform the pyramidal and hexagonal-honeycomb core
higher masses. This can be rationalized as follows. Upon imp
ing the constrainth/L>1023, a large fraction of the mass of th
sandwich beam is in the core. Recall that the pyramidal a
hexagonal-honeycomb cores have no longitudinal strength w
the metal foam core gives some additional longitudinal stretch
resistance to the sandwich beam, and this results in its sup
performance.

So far we have determined the optimal designs of sandw
beams for a midspan deflection ofw̄<0.1. But how does the
relative performance depend upon the allowable value ofw̄? The
performance of the sandwich beams with constraintsh/L>1022

and c̄5531023 is illustrated in Fig. 13 forw̄<0.1 and w̄
<0.4. As expected, the beams can sustain higher impulses w
the constraint onw̄ is relaxed tow̄<0.4. However, the rankings
change for the two levels ofw̄ considered in Fig. 13. With the
higher allowable deflections, the longitudinal stretching of t
core becomes increasingly important and the metal foam core
performs the pyramidal or hexagonal-honeycomb cores.

Fig. 11 A comparison of the maximum blast impulse sus-
tained by monolithic beams and by optimal designs of sand-
wich beams, subjected to the constraints w̄Ï0.1 and h ÕL
Ð10À2. Results are presented for c̄Ä5Ã10À3 and 0.02. The
core relative density is r̄Ä0.1 and densification strain is
eDÄ0.5.
Transactions of the ASME
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diamond-celled core has a high compressive and an ideal lon
dinal strength, and has a blast performance which is nearly in
tinguishable from that of the ‘‘ideal’’ core under the constra
w̄<0.4.

In the above analysis the relative density of the core has b
taken to ber̄50.1, and the yield strain of the core material tak
to be representative of that for structural steels,eY50.002. Con-
sequently, the individual struts of the pyramidal and diamo
celled cores deform by plastic yield. We proceed to investigate
blast performance of the pyramidal and diamond-celled core s
wich beams at relative densitiesr̄ such that elastic buckling of the
core members can intervene. The optimal performance
diamond-celled core sandwich beams with the constraintsh/L
>1022 andw̄<0.1 is plotted in Fig. 14~a! for selected values o
core relative densityr̄50.02, 0.05, 0.1 and 0.2. The core is a
sumed to be made from a solid of yield straineY50.002 and
consequently cores of densityr̄50.02 and 0.05 deform by elasti
buckling. While the performance of the low core density beam

Fig. 12 A comparison of the maximum blast impulse sus-
tained by monolithic beams and by optimal designs of sand-
wich beams, subjected to the constraint w̄Ï0.1 with c̄Ä5
Ã10À3. Results are presented for constraints h ÕLÐ10À2 and
10À3. The core relative density is r̄Ä0.1, eYÄ0.002 and densi-
fication strain is eDÄ0.5.

Fig. 13 A comparison of the maximum blast impulse sus-
tained by monolithic beams and by optimal designs of sand-
wich beams, subjected to the constraint h ÕLÐ10À2 with c̄Ä5
Ã10À3. Results are presented for constraints w̄Ï0.1 and 0.4.
The core relative density is r̄Ä0.1, eYÄ0.002 and densification
strain is eDÄ0.5.
Journal of Applied Mechanics
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slightly superior to ther̄50.1 beams, these beams of low co
density have stubby designs with high values ofc/2L. Thus, these
optimal designs become impractical for high blast impulses
the curves in Fig. 14~a! have been truncated atc/2L50.2. A simi-
lar analysis was performed for the pyramidal core; these co
deform by elastic buckling atr̄<0.015. The results for the opti
mal blast performance of these beams are summarized in
14~b!; again the low density cores provide superior performan
but the beams are stubby~high c/2L) and hence practical design
of these beams are unable to sustain high blast impulses. A c
parison of Figs. 14~a! and 14~b! reveals that over the entire rang
of relative densities investigated, the diamond-celled core be
always out perform the pyramidal core beams.

5 A Comparison of Structural Performance Under Air
and Water Blast Loading

Due to the low acoustic impedance of air, the Taylor flui
structure interaction parameterc'0 for an air blast, as discusse
in Section 3.2. In this section we discuss blast loading in air
assumingc̄[ch/L50: The entire blast impulse is transmitted
the sandwich structure.

Fig. 14 Comparison of the maximum blast impulse sustained
by optimal „a… diamond-celled and „b… pyramidal core sandwich
beams for selected core densities, with c̄Ä5Ã10À3 and h ÕL
Ð10À2, w̄Ï0.1. The yield strain of the core parent material is
assumed to be eYÄ0.002 and densification strain of the core is
taken as eDÄ0.5.
MAY 2004, Vol. 71 Õ 397
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Consider the representative case of a sandwich beam w
pyramidal core (r̄50.1,eD50.5,eY50.002), subjected to an ai
blast of magnitudeĪ 51023. The design chart is given in Fig. 15
with axes ofc̄ andh̄, and with contours displayed for the midspa
deflectionw̄ of the inner face and through-thickness core co
pressionec . The tensile ductility of the face sheet material
taken to bee f50.2 representative of structural steels; despite t
moderately high value ofe f , tensile failure of the face sheet
dominates the chart with less than half the design space of Fig
resulting in acceptable designs. In contrast, for water blast~Fig.
8!, tensile failure is of less concern even for a higher blast impu
of Ī 51022; the underlying explanation is that only a small fra
tion of the impulse is transmitted into the sandwich structure
water blast loading.

Fig. 15 Design chart for a sandwich beam, with a pyramidal
core „r̄Ä0.1,eYÄ0.002,eDÄ0.5…, subjected to an air blast. The
nondimensional impulse is ĪÄ10À3. The regime of tensile fail-
ure is shown for an assumed tensile ductility of face sheets of
e fÄ0.2. Contours of w̄ and ec are included.

Fig. 16 Design chart for a sandwich beam, with a pyramidal
core „r̄Ä0.1,eYÄ0.002,eDÄ0.5…, subjected to an air blast. The
beam deflection is w̄Ä0.1. Contours of Ī and M̄ are displayed.
The arrows trace the path of designs which maximize the im-
pulsive resistance with increasing mass.
398 Õ Vol. 71, MAY 2004
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A design map for air blast loading of the above pyramidal co
sandwich beam is given in Fig. 16, with contours ofĪ required to
produce a mid-span deflection ofw̄50.1. The figure should be
contrasted with the water blast map shown in Fig. 10, again
w̄50.1; the only difference in the assumed values of the plot
that c̄50 in Fig. 16 andc̄5531023 in Fig. 10. While the con-
tours ofM̄ are identical in the two figures, the contours ofĪ are of
markedly different shape. For the case of air blast~Fig. 16! there
is no need to impose a constraint on the minimum value forh/L:
The trajectory of (c̄,h̄) which maximizesĪ for a given M̄ no
longer lies along a line of constanth/L and is associated with
h/L[h̄c̄ values in the range 0.003 to 0.032. The arrows shown
Fig. 16 trace the optimum designs with increasing mass. This
be contrasted with the water blast problem where the optim
designs lay along the specified minimum value ofh/L.

The air blast performance of the optimized sandwich beam
compared to that of the monolithic beam in Fig. 17~a!. Specifi-
cally, the maximum sustainable impulse is plotted against the n
dimensional massM̄ , with the deflection constraintw̄<0.1 im-
posed. In contrast to the case of water blast, the performance
upon employing sandwich construction instead of monolit
beams is relatively small; at best the diamond-celled core sust

Fig. 17 „a… Comparison of the maximum impulse sustained by
monolithic and sandwich beams for an air blast with the con-
straint w̄Ï0.1. The core relative density and densification
strain are, r̄Ä0.1 and eDÄ0.5, respectively, and eYÄ0.002. „b…
The optimal designs of sandwich beams with pyramidal and
diamond-celled core.
Transactions of the ASME
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an impulse about 45% greater than a monolithic beam of eq
mass. The geometry of the optimal pyramidal and diamond-ce
sandwich core beams of Fig. 17~a! are plotted in Fig. 17~b!. For
both configurations,c̄ increases with increasing mass, with th
optimal pyramidal core beams having a lowerc̄ ~and a higherh̄)
as compared to the optimal diamond-celled core beams.

In water blast, the sandwich beam out performs the monoli
beam mainly due to the fact that the thin~and therefore light!
outer face of the sandwich beam acquires a smaller fraction o
blast impulse compared to the relatively thick monolithic bea
However, in the case of air blast, the full blast impulse is tra
mitted to the structure for both the sandwich and monolit
beams. The superior air blast resistance of sandwich beam
monolithic beams, as seen in Fig. 17~a! is attributed solely to the
shape factor effect of the sandwich construction. To clarify t
point, the deflection of a sandwich beam with a diamond-ce
core (r̄50.1,c̄5h̄50.2) is plotted in Fig. 18 as a function of th
air impulse for two assumed values of core densification st
eD50.01 andeD50.5 along with the response of a monolith
beam of equal massM̄50.2. Figure 18 reveals that the beam wi
the core densification straineD50.01 which maintains the sepa
ration of the face sheets and is the strongest while the monol
beam is the weakest: it is the shape factor effect that gives
sandwich construction structural advantage in air blast.

6 Comparison With Three-Dimensional Finite
Element Simulations

Xue and Hutchinson@6# conducted three-dimensional finite e
ement~FE! simulations of the dynamic response of clamped sa
wich beams with the corrugated, square-honeycomb, and pyr
dal core geometries. In these FE simulations, Xue and Hutchin
@6# modelled the core members explicitly including the develo
ment of contact between the core members and the face s
under increasing through-thickness compressive strain. An
pulse was applied to the front face of the sandwich beam and
their numerical results can be compared directly to our analyt
predictions for air blast, withc̄50.

Xue and Hutchinson@6# modeled sandwich beams made fro
304 stainless steel and assumed an elastic, power-law harde
stress versus strain response for the solid steel with a yield s
eY50.2% and a power law hardening exponentN50.17. In the
analytic predictions given below we assume a rigid, ideally pla

Fig. 18 The normalized deflection of the bottom face of a
diamond-celled core „r̄Ä0.1,eYÄ0.002… sandwich beam with c̄
Äh̄Ä0.2 as a function of the normalized impulse, for two se-
lected values of the core densification strain eD . The response
of a monolithic beam of the same mass M̄Ä0.2 is included.
Journal of Applied Mechanics
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solid material response, and include elastic buckling of the c
members by assuming a solid material yield straineY50.2%. In
line with experimental data for metal foams, we take the dens
cation straineD of the core to be related to the relative densityr̄
through,@2#,

eD50.821.75r̄. (72)

Xue and Hutchinson@6# investigated the effects of core relativ
density and core thickness for sandwich beams of total masM̄
50.04 and considered an impulseĪ 5531023. Comparisons be-
tween the FE and analytical predictions of the maximum fa
sheet displacements of the corrugated core sandwich beam
shown in Fig. 19: In Fig. 19~a! the effect of core relative density
is investigated withc̄50.1, while in Fig. 19~b! the effect ofc̄ is
studied for a core of relative densityr̄50.04. While the analytical
predictions are within 15% of the FE calculations in all cases,
analytical model does not capture the qualitative form of
variations as predicted by the FE analysis. A careful compari
with the FE results indicates that this is mainly due to the fact t
for Ī 5531023, the analytical solutions predict full densificatio

Fig. 19 Comparison of the analytical predictions and the
three-dimensional FE predictions of Xue and Hutchinson †6‡ for
the deflection of sandwich beams with a corrugated core. The
beams have a mass M̄Ä0.04 and are subjected to an impulse
ĪÄ5Ã10À3. The effect upon w̄ and w̄ o of „a… core relative den-
sity r̄ for c̄Ä0.1 and „b… c̄ with the core relative density held
fixed at r̄Ä0.04. The solid lines give the analytic solutions and
the dotted lines „with symbols … give the FE results.
MAY 2004, Vol. 71 Õ 399
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in nearly all cases while in the FE simulations no distinct den
fication limit exits; rather, continued core compression occurs
increasing stress level after contact has begun between the
members and the face sheets. An improved core constitu
model with continued hardening rather than lockup after so
critical straineD may be able to address this deficiency; this
however beyond the scope of the present study.

Xue and Hutchinson@6# employed a series of FE calculations
identify a ‘‘near-optimal’’ sandwich configurations with massM̄
50.04. They concluded that a sandwich beam with a core
relative densityr̄50.04 andc̄50.1 ~giving h̄50.08) is an opti-
mal configuration for a moderately large blast. Comparisons
tween the FE and analytical predictions~with the choiceeD
50.5) of the deflections of the inner face sheet of these ‘‘op
mum’’ sandwich beams as a function of blast impulse are sho
in Fig. 20. Over the range of impulses considered, the analyt
predictions are within 10% of the three-dimensional FE calcu
tions for the pyramidal, corrugated and square-honeycomb
sandwich beams as well as for the monolithic beams. Note tha
FE calculations predict that the monolithic beam out performs
pyramidal core sandwich beam~i.e., smaller deflections at th
same impulse! for impulsesĪ .531023. This is due to the wrin-
kling of the face sheets between the nodes of the pyramidal tr
While this effect is not included in the current analysis, the a
lytical model too will predict that the monolithic beam out pe
forms the pyramidal core beam at large deflections: at large
flections the degree of axial stretching becomes significant, ye
pyramidal core provides no longitudinal strength.

7 Discussion
An approximate analytical methodology has been presente

predict the dynamic response of sandwich beams to blast load
in air and water. A number of approximations have been mad
make the problem tractable to an analytical solution. Principa
these are~i! the one-dimensional approximation of the blast eve
~ii ! separation of the stages of the response into three seque
phases,~iii ! neglect of the support reaction during the blast ev
and during the core compression phases, and~iv! a highly simpli-
fied core constitutive model wherein the core is assumed to
have as a ideally plastic locking solid. The effects of strain ha
ening and rate sensitivity of the solid material has also b

Fig. 20 Comparison of the analytical predictions and the
three-dimensional FE predictions of Xue and Hutchinson †6‡ for
the deflection w̄ of monolithic beams and sandwich beams with
corrugated, square-honeycomb, and pyramidal cores. The
beams have a fixed mass M̄Ä0.04 and the sandwich beams
have a core of relative density r̄Ä0.04 and aspect ratio c̄
Ä0.1. The symbols denote the FE results while the lines are the
analytical predictions.
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neglected. Despite these approximations, the analysis has
shown to compare well with three-dimensional FE calculatio
Thus, the analysis presented here is not only adequate to ex
trends and scaling relations but is also expected to suffice to m
approximate predictions for the purposes of selecting core top
gies and sandwich beam geometries. The nondimensional for
las presented here bring out the stages of the response clearl
hence aid the interpretation of more accurate numerical calc
tions such as the recent dynamic finite element analysis of
and Hutchinson@6#.

Two notes of caution on the model presented here must
mentioned. Recent numerical fluid-structure interaction calcu
tions on similar sandwich structures performed by Belytschko@14#
indicate that the one-dimensional Taylor analysis underestim
the impulse transmitted into the sandwich structure and thus
performance gains due to sandwich constructions indicated
may be somewhat optimistic. Second, the failure of the face sh
near the supports by dynamic necking have not been addre
here. Additional investigations are required to establish an ap
priate failure criterion under dynamic conditions.

8 Concluding Remarks
An analytical methodology has been developed to analyze

dynamic response of metallic sandwich beams subject to both
and water blasts. The response of the sandwich beams is sepa
into three sequential stages: Stage I is the fluid-structure inte
tion problem, stage II is the phase of core compression, an
stage III the clamped beam is brought to rest by plastic stretch
and bending. The simple analytical formulas presented above
in good agreement with more accurate three-dimensional FE
culations given in a parallel study of Xue and Hutchinson@6#.

The analysis has been used to construct performance chart
the response of both monolithic and sandwich beams subjec
both air and water borne blasts. For the case of water blast
order of magnitude improvement in blast resistance is achieve
employing sandwich construction. This is mainly due to flui
structure interaction: The reduced mass of the sandwich outer
leads to a reduction in the impulse transmitted to the struc
from the water. In air, the impedance mismatch between air
the face sheet is comparable to that between air and a mono
beam; consequently, the use of sandwich construction give
more moderate gain in blast resistance compared to monol
construction. For both air and water blast the diamond-celled c
sandwich beam gives the best performance due to the longitud
strength provided by the core. Comparisons of the predicti
presented here with three-dimensional coupled fluid-structure
merical calculations and blast experiments need to be perfor
to validate and extend this analysis.
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A Nondimensional Number to
Classify Composite Compressive
Failure
A new nondimensional number (h) to predict the dominant failure mechanism of fib
reinforced composites under compression loading is presented. Results from pre
experimental investigations on the failure of glass fiber reinforced and carbon fiber
forced vinylester matrix composites, respectively, were used to motivate and deveh.
Experimental results available in the open literature are used to compare the predic
of h. This number can be used as a design tool to develop new composite material
a preferred failure mode. The exercise of developing such a number provides insigh
parameters that control the compressive strength of fiber reinforced comp
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1 Introduction
Mechanism based compressive failure strength prediction m

els provide a better understanding of the failure behavior of co
posites. However, these models require that the failure mecha
of the composite under the given loading and constituent mate
properties be known beforehand. Thus, a method to predict
failure mechanism is very useful not only from the view point
predicting the failure mechanism a priori but also in understa
ing the various factors that affect the failure mechanism of co
posites under compression. Initial work on understanding co
pressive strength behavior of fiber reinforced polymer ma
composites~FRPC! was based on an elastic micro-buckling ana
sis by Rosen@1#. Later, Argon@2#, Budiansky@3#, and Budiansky
and Fleck@4#, realized that misalignments in fiber reinforceme
cause the development of local shear stresses which coupled
matrix inelasticity lead to buckling of fibers locally. The failur
mode resulting from this mechanism is called kinking. Compa
to kinking failure, composites with brittle matrices or with fibe
of relatively large diameter tend to fail by fracture along the fib
matrix interface, when subjected to axial compression. T
mechanism, which is governed by transverse stresses and
fiber-matrix interfacial fracture energy is referred to as splittin
Experimental evidence for splitting failure is provided in Schu
@5#, Lee and Waas@6#, Piggott and Harris@7#, and Drzal et al.@8#.
Experiments conducted by Lee and Waas@6#, Piggott and Harris
@7#, Oguni and Ravichandran@9#, and Piggott@10# on glass and
carbon fiber reinforced polymer matrix composites under p
compression provided insight into parameters affecting the s
ting compressive strength of polymer matrix composites. Rec
work by Yerramalli and Waas@11#, have high lighted the effect o
combined loading on failure mechanisms while work by Ogu
et al. @12#, has shown the effect of multiaxial compression
failure mode transition in E-glass/vinylester composites.

Splitting failure models for fiber reinforced polymer matr
composites under pure compression loading using classical li
elastic fracture mechanics and energy considerations are pres

1Currently Post-doctoral Research Fellow, McKay Orthopaedic Research Lab
tory, University of Pennsylvania.

2To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
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final revision; November 4, 2003. Associate Editor: M.-J. Pindera. Discussion on
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Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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in Lee and Waas@6#, Lee@13#, and Lee et al.@14#. Independently,
Oguni and Ravichandran@9#, obtained expressions for splittin
compressive strength of fiber reinforced polymer matrix comp
ites in the presence of lateral confining pressure.

Details of the kink band failure mode under pure compress
and under combined compression and shear have been exten
studied by Kyriakides et al.@15#; Vogler and Kyriakides@16# and
Hsu et al.@17#, who have used the AS4/PEEK material system
a fixed fiber volume fraction in their experiments. The effect
fiber mechanical properties and fiber volume fraction on the co
pression response of fiber composites has been studied by Y
malli and Waas@11#. Other practical and relevant consideratio
of kinking, such as the effect of adjacent plies~Drapier et al.
@18#!, the effect of stress gradients~Jelf and Fleck@19#; Berbinau
et al. @20#; Khamseh and Waas@21#; Ahn and Waas@22#; Drapier
et al. @23#; Wisnom and Atkinson@24#; Wisnom @25#!, and size
effects ~Bazant et al.@26#!, have also received attention. Com
pared to the focus on kinking failure, relatively little attention h
been paid to splitting failure.

The present paper examines the previous experimental dat
compressive failure reported in the literature, with a focus
understanding the effect of three different parameters viz. fi
geometry~i.e., diameter!, matrix mechanical properties and typ
of loading ~uniaxial or axial-shear loading! on compressive fail-
ure. These experimental data are then examined in the light
new non-dimensional number that is used to classify the fail
mechanism.

The paper is organized as follows: First the results of previ
experimental studies on glass fiber and carbon fiber/vinyl e
composites are summarized. This is followed by a discussion
failure mechanisms and their dependence on fiber geometry,
trix properties, and interfacial fracture energy captured throu
simple analytical models developed earlier. The development oh
and a discussion on howh can be used to predict and demarca
compressive failure mode and thus compressive strength, u
available experimental results are presented next. Finally, c
cluding remarks are offered.

2 Experimental Results on Glass Fiber and Carbon
Fiber Vinyl Ester Composites

Cylindrical specimens of 6.8 mm diameter and 12.5 mm ga
length were used to study the compression behavior of glass
and carbon fiber composites to understand the effect of fiber
ameter, matrix material properties, and interfacial fracture ene
on compressive failure mechanism and compressive strength.
different glass fiber diamaters~13.5mm and 24mm! were studied.
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The diameters were selected based on availability. Carbon fi
of 5 mm diameters were studied. The material properties of g
fiber and the carbon fiber~assumed isotropic! and that of viny-
lester resin are given in Table 1. This table also shows the p
erties of other fiber and matrix systems, taken from the literat
~Budiansky et al.@27#!. The E-glass fibers were obtained fro
Vetrotex Certainteed and the carbon fibers from Hexcel corp
tion. Vinylester~Dow Derakane 411-C50! resin was used as th
matrix material for both type of reinforcing fibers. For the pu
compression tests, a special test fixture made of hardened
with four guide rods and a thick base was used. The four gu
rods and the thick base was needed to prevent any macros
buckling of the specimens. A schematic of the test fixture is sho
in Fig. 1. To investigate the effect of matrix properties, the spe
mens were subjected to compression-torsion loading usin
servo-hydraulic tension-torsion loading frame. For this purpo
collet grips were used to grip the specimens since they can
vide resistance to slipping of the specimen in torsion and als
compression loading. Specific details of this experimental se
and the experimental investigation are provided in Yerramalli a
Waas@28#. Torsion loading subjects the matrix to shear, there
changing the effective inelastic reponse of the matrix. As a res
the same matrix material, under different loading states provid
means to study the axial compression reponse in the presen
an effective matrix material that has different quantifiable prop
ties. This aspect is further discussed later.

3 Failure Mechanisms
Failure mechanisms that dominate the compressive behavio

polymer matrix composites are kinking and splitting. Howev
the factors triggering these failure mechanisms are entirely dif
ent. Kinking is generally assumed to be a geometric instab
induced failure mechanism whereas splitting is governed by
propensity to fracture, where crack growth is initiated from p
existing flaws. Splitting in FRPC is dictated by the balance
tween the magnitude of the fiber/matrix interfacial fracture ene

Table 1 Relevant mechanical properties of various fibers and
matrices

E (MPa) G (MPa) r 0 (mm)

Glass fiber 72,000 29,508 0.012
Carbon fiber 276,000 8960 0.0025
Silicon carbide 80,000 0.008
Vinylester 3585 1318
Lithium Aluminum Silicate 3585

Fig. 1 A cross-sectional view of pure compression grips
Journal of Applied Mechanics
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and the available stored strain energy. Thus, a mechanism b
approach to studying failure should ideally include the effect
each of the important parameters like fiber diameter, fiber m
alignment, fiber and matrix properties and type of loading on
resulting analysis.

The expression for splitting compressive stress,scr
sp as derived

in Lee @13#, Lee and Waas@6# and given in Yerramalli and Waa
@11# is as follows:

scr
sp5A 8Vf

2g f

r 0~1/d2b!
, (1)

whereVf is fiber volume fraction,g f is interfacial fracture energy
r 0 is fiber radius,d andb are constants dependent on the elas
properties of the matrix and the fiber. In terms of engineer
constants,d andb can be expressed as

d5Ef1EmS 1

Vf
21D

a5F2~11n f !~122n f !

Ef
~Vf

2121!

1
2~11nm!~122nm1Vf

21!

Em
G21

b5@Ef1~Vf
2121!$Em14a~n f2nm!2%#21

where a subscriptm refers to matrix properties and a subscripf
refers to fiber properties. The symbolsE and n denote the axial
modulus and the poisson’s ratio of fiber or matrix depending
the subscript. For a unidirectional composite with initial misalig
ment f, the kinking compressive stress,scr

k as given by the
Argon-Budianksy-Fleck prediction~see Budiansky and Fleck@4#!,
is

scr
k 5

ty

f1gy
, (2)

wherety is the composite shear yield stress andgy is the corre-
sponding composite shear strain. A comparison of the predict
from Eq. ~1! and Eq.~2! along with relevant mechanical prope
ties ~shear modulus,Gc , shear yield stress,ty , calculated based
on the 0.7Gc criterion, Jelf and Fleck@19#, and the Ramberg-
Osgood fit parameters, A and n, as described in Jelf and F
@19#! are presented in Table 2 and Table 3. The rightmost colu
indicates the failure mechanism observed during experiments.
clear that in case of glass composites, Eq.~2! tends to overesti-
mate the failure stress as compared to the predictions of Eq.~1! at
low volume fractions, where the failure mechanism is splitting.
case of carbon composites, where the observed failure mecha
is kinking, the splitting model predictions are high compared
the predictions from the kinking model of Eq.~2!. From the above
equations it is evident that fiber diameter, interfacial fractu
energy—influenced by the type of fiber, and the effective sh
properties at failure—influenced by the nature of loading,~e.g.,
combined compression-torsion! are three important paramete

Table 2 Comparison of splitting and kinking failure stress for
glass Õvinylester „dia. 24 mm… composite with misalignment
angle, fÄ2.5° and g fÄ0.1224 KJ Õm2

Vf A n
Gc

experiment

~MPa!
ty

~MPa!
Eq. ~2!
~MPa!

Eq. ~1!
~MPa!

Fail. Mechanism
Lee and Waas@6#

0.1 77.3 6.15 1800 35.6 495 270 Splitting
0.2 101.15 5.8 2400 43.8 629 389 Splitting
0.3 88.6 5.25 2750 32.35 536 505 Splitting
0.4 158 3 3140 23.2 428 619 Split/Kink
0.5 68.68 12.44 3260 45.4 718 732 Split/Kink
0.6 78.71 7.25 3630 37.23 639 845 Split/Kink
MAY 2004, Vol. 71 Õ 403
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that control the failure mechanism and thus the failure strengt
fiber reinforced composites. In the following sections, a disc
sion of these three important parameters is presented.

Effect of Fiber Diameter. As can be seen from Eq.~1!, the
compressive splitting stress is inversely proportional to the fi
radius and directly proportional to the fracture energyg f . Thus,
one would expect that, if the fracture energyg f , fiber volume
fraction,Vf , and the elastic properties of fiber and matrix are k
the same, reducing the fiber diameter should result in an incr
in compressive splitting strength. Based on the above mode
was decided to examine the results of previous experiments
pure compression response of glass fiber composites reinfo
with glass fibers of 13.5mm and 24mm diameter, as a function o
fiber volume fraction, Yerramalli@29#. Under pure compression
loading, it was observed that instead of an increase in fai
strength with decreasing fiber diameter for a given fiber volu
fraction~as predicted by the splitting compressive strength pre
tion ~see Eq.~1!!, the compressive strength assumed a fairly c
stant value associated with achange in the failure mechanism
from splitting to kinking with increasing fiber volume fraction
The change from splitting to kinking occurs at aroundVf
540%. Even at a low fiber volume fraction of 10%, where sp
ting was observed in case of glass composites reinforced with
mm diameter specimens, the composite specimens reinforced
glass fibers of 13.5mm diameter failed by kinking for all the fibe
volume fractions tested.

At higher volume fractions~60%!, the glass fiber composite
with a larger diameter clearly exhibits a higher compress
strength than the lower diameter glass composite with both ex
iting failure by kinking. This clearly shows the importance of fib
diameter on kinking compressive strength. A three-dimensio
finite element model developed by the authors~Yerramalli @29#
and Yerramalli and Waas@30#! has been able to capture and pr
vide an explanation for this result. It is noted that the Argo
Budiansky-Fleck prediction of compressive strength does not
play a direct dependency on fiber diameter. Instead, the effec
diameter indirectly enters through the dependency on shear y
strength of the composite. However, there are no known avail
results for the effect of fiber diameter on the shear yield stren
of a composite.

The various failure mechanism observed in glass composite
24 mm and 13.5mm specimens are shown in Figs. 2 through 4
plot of the failure compressive strength as a function of fib
volume fraction,Vf , for both glass composites~reinforced with
two different fiber diameters! is presented in Fig. 5. Note tha
carbon fiber composites~fiber diameter of~5 mm!! in the same
matrix material failed by kinking throughout the range of fib
volume fractions studied.

Effect of Fiber Properties. The effect of fiber properties ca
be inferred from previous experimental results and the predic
formulas presented before. With different types of fibers viz. gl
and carbon, it was found that the compressive strength as we
the failure mechanism changed. A comparison of the compres
failure strengths as observed in the experiments by Lee and W

Table 3 Comparison of splitting and kinking failure stress for
carbon Õvinylester „dia. 5 mm… composite with misalignment
angle, fÄ2.5° and g fÄ0.06 KJ Õm2

Vf A n
Gc

experiment

~MPa!
ty

~MPa!
Eq. ~2!
~MPa!

Eq. ~1!
~MPa!

Fail. Mechanism
Lee and Waas@6#

0.1 67 6.62 1600 38.6 420 508 Kinking
0.2 55.9 10.75 1800 58.8 400 886 Kinking
0.3 160 3 2400 48.9 371 1263 Kinking
0.4 100 5.3 3000 43.3 579 1639 Kinking
0.5 159 3.48 3316 41 648 2014 Kinking
0.6 98.44 3.25 3750 36.4 233 2390 Kinking
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@6# for carbon and glass fiber reinforced composites are show
Fig. 6. The variation of compressive strength as a function of fi
volume fraction,Vf , shows that both glass and carbon fiber rei
forced composites have a similar trend. However, in interpret
the results of this plot, care must be taken to associate the var
data points with the different failure mechanisms for the purpo
of using a mechanism based strength prediction.

Effect of Loading. Research into the compressive streng
behavior of fiber reinforced composites has shown that fiber m
alignments cause a reduction in failure stress of the compos
under pure compressive loading. In case of multiaxial load
~compression-compression or compression-torsion! the compres-
sive failure strength and the failure mechanism are both affec
Oguni et al.@12# studied the failure mode transition due to co
fining pressure in E-glass/vinylester composites~with reinforcing
fiber diameter of 24mm!. In the present paper, previous exper
mental results obtained from compression-torsion loading of
lindrical specimens of glass/vinylester composites~fiber diameters
of 24 mm! and shown in Fig. 7, will be used for discussion~see
Yerramalli and Waas@11#!. The failure mechanism observed i
glass composite specimens under compression-torsion loadin
shown in Figs. 4 through 8. It was observed that at high compr
sion to low rotation loading ratios, the specimens were failing in
combined splitting-kinking failure mode. On the other hand,
high rotation loading, e.g., pure torsion, the failure was domina
by matrix cracking due to twisting of fibers. At intermediate loa
ing ratios, kinking was observed to be the failure mechanism.

Fig. 2 Kink band in glass composites of fiber diameter 13.5
mm and VfÄ10%

Fig. 3 Kink bands in glass composites of fiber diameter 13.5
mm and VfÄ60%
Transactions of the ASME
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case of carbon/vinylester composites, the failure mechanism
observed to be kinking throughout the range of loading rat
examined. An interesting observation is that the same type
composite changes it’s failure mode when stressed under diffe
loading ratios. This observation was also made by Piggott@10#
who found that the failure mode changed when the compos
were tested under pure compression with partially cured mat
The reason for the change in failure mechanism can be attrib
to the magnitude of the shear modulus of the matrix and hence
composite. As evident from Eq.~2!, the kinking stress is depen
dent on the shear properties of the composite. Hence, when
torsional load is sufficiently high, beyond the magnitude requir

Fig. 4 Splitting failure zone in glass composites with broom-
ing of fibers, 24 mm and VfÄ50%

Fig. 5 Comparison of compressive strengths between glass
24 mm and 13.5 mm diameter specimens
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to cause shear yielding of the composite and the matrix, gl
composites tend to fail by kinking instead of splitting. Similarl
when a resin is partially cured~as was the case with the exper
ments conducted by Piggott@10#!, it results in a matrix with a
lower shear yield stress, inducing the glass fiber reinforced co
posites to fail by kinking instead of splitting, since, splittin
would have required higher compressive stresses to cause fai

4 Dimensional Analysis
The experimental results, as outlined in the previous sectio

have revealed that the geometric~fiber diameter,Vf , misalign-
ment angle,f! parameters and the fiber and matrix mechani
and fracture properties (Ef , Em , Gm , andg f) are the most im-
portant parameters controlling the failure mechanisms in fiber
inforced composites. Based on this observation, a suitable dim
sionless number emerges that can be used to classify fi
reinforced composites based on their failure mechanism.

Fig. 6 Comparison of compressive stress of glass and carbon
composites as function of Vf

Fig. 7 Comparison of compressive stress of glass and carbon
composites as function of Vf
MAY 2004, Vol. 71 Õ 405
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The first step in determining this nondimensional number is
write a general functional relationship including all the terms r
evant to the physical phenonmenon, which in this case is
failure mechanism in the composite.

f ~g f ,2r 0 ,Gc ,f0!

Here, we consider only the basic material and geometric par
eters affecting the failure mechanism.g f represents the interfacia
fracture energy,Gc is the shear modulus of the composite whic
can be calculated from the matrix (Gm) and fiber (Gf) shear
modulus values and the fiber volume fraction,Vf or determined
experimentally. 2r 0 is the fiber diameter which represents fib
geometry andf0 is a representation of initial fiber misalignmen
These parameters can be written down in terms of their fundam
tal dimensions (M ,L,T). The units of g f are J/m2 which is
M1L0T22. Similarly, the variablesr 0 , Gc , and f0 can be ex-
pressed asM0L1T0, M1L21T22, and radians, respectively. Thus
the following nondimensional numberh now emerges

h5
g f

Gc2r 0
. (3)

This number can be interpreted as a ratio of surface modu
(g f /r 0→units of N/m2! to composite shear modulus. It can b
seen that this nondimensional number incorporatesVf and f0
implicitly since the effective value of composite shear modu
Gc is dependent on the fiber volume fraction,Vf , and the initial
fiber misalignment,f0 .

4.1 Usefulness ofh. A progressive reduction inh indicates
that the shear modulus is increasing relative to the interfacial fr
ture energy,g f . A higher shear modulus will make it less condu
cive to fail by kinking and causes the composite to split. Similar
a largeh implies that it is less likely for the composite to split an
hence fail by kinking. Thus, usingh, an a priori prediction of the
failure mechanism can be made for a given fiber and matrix co
bination the variation of log~1/h! against fiber volume fraction,
Vf , is shown in Fig. 9 for a glass/vinylester composite withr 0

56.75mm and r 0512mm and g f50.1224 KJ/m2. The shear
modulus of the composite,GC depends on fiber and matrix prop
erties and the fiber volume fraction,Vf and is given in Table 2 and
Table 3. Since, it was observed in the experiments that the g
composites of fiber diameter~13.5 mm! failed by kinking for all
Vf , it is logical to assume the curve for 13.5mm as a boundary
for kinking and the curve corresponding to 24mm glass composite
as a boundary for splitting and the zone in between can be defi
as a transition zone. It should be noted that the shear modulu
glass fiber~24 mm! and glass fiber~13.5mm! reinforced compos-
ites are taken to be the same for the calculation ofh. Thus, this

Fig. 8 Kink band in glass composite reinforced with 24 mm
fiber diameter at DÕRuÄ0.52
406 Õ Vol. 71, MAY 2004
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universal band splits the plot in Fig. 9 into two regions. Poin
located in the splitting zone correspond to composites that fai
splitting. Points located in the bottom half~kinking zone! corre-
spond to kinking failure. Points located in the band correspond
transition between kinking and splitting, and the co-existence
both failure mechanisms as has been reported by Piggott@10#,
Oguni et al.@12#, and Yerramalli@29#; Yerramalli and Waas@30#.
Thus, onceh is calculated, Fig. 9 can be used to a priori establ
what compressive failure mechanism is operative and thus an
propriate mechanism based compressive strength model ca
used to predict the compressive failure strength. The width of
transition zone and the limits of the splitting zone at highVf can
be further refined with more experimental data. However, the c
rent plot, based on available experimental data, could be a us
stepping stone for further classification and refinement of fail
zones. If forany materialthe value ofh is lying between these
two bounds, then based on theVf value, the failure mechanism
could be kinking, splitting or a combination of both.

Calculating the value ofh for carbon fiber composites, we se
that the curve of log~1/h! lies in the bottom half below the 13.5
mm glass curve as shown in Fig. 10. This is the kinking region a
is consistent with the experimental observation that carbon c
posites fail by kinking for all the fiber volume fractions teste
Further, for comparison, the value ofh has been calculated for
ceramic matrix composite and it is found that the curve
log~1/h! lies in the top part of the plot. This indicates that th
ceramic matrix composite fails by splitting, and this is exac
what was observed in the experimental results reported by B
ansky et al.@27#.

5 Discussion
As seen in Fig. 10,h has been calculated as a function ofVf for

different composite material systems. The values ofg f chosen for
glass fiber is 0.1224 KJ/m2 and for carbon fibers it was taken a
0.06 KJ/m2. In case of Silicon carbide fibers~diameter is 16mm!
the value ofg f50.022 KJ/m2 was taken from the paper by Bud
ansky et al.@27# and the composite shear modulus was calcula
using micromechanical formulas. Using these values, it has b
shown in the previous section that the curves of carbon/vinyle
~CV! and sic/lialsi lie in two extreme corners of the plot, whil
the curves for glass/vinylester~GV! composites lie in the center o
the plot. It can therefore be inferred that the glass compos

Fig. 9 Classification of failure zones based on h
Transactions of the ASME
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tested lie in a transition zone where the failure mechani
changes from kinking to splitting or vice versa. This shows t
importance ofh. Based on the magnitude ofh, a suitable fiber-
matrix combination could be chosen so as to have a partic
failure mechanism. Based on this number, one can explain
reason why a glass composite of smaller diameter fails by kink
while a glass composite reinforced with larger diameter fibers~24
mm! fails by splitting. With the reduction in the fiber diameter th
value of surface modulus (g f /2r 0) increases for the same materi
system. This makes the splitting failure stress larger causing
composite to fail by kinking. Similarly, when the glass composit
of 24 mm diameter fibers are subjected to compression-tors
loading they tend to have a failure mode transition from splitti
to kinking. This can be explained by looking at the value ofh as
a function of applied shear stress. Once the value of remo
applied shear stress exceeds the value of shear yield stress,ty then
the instantaneous shear modulus of the composite starts to re
and leads to a higher value ofh. A higher value ofh indicates that
the shear modulus is very low which makes it easier for the co
posite to fail by local buckling of fibers leading to kinking. Th
nondimensional number,h was calculated for the experimenta
data given in Piggott@10# and Yerramalli and Waas@11# and is
presented in Fig. 11. The data obtained from Piggott@10# was for
a Vf530% glass composite with a partially cured matrix. The te
data from Yerramalli and Waas@11# was obtained from testing
glass composites (Vf550%) under combined compression
torsion loading. As can be seen, at a given fiber volume fracti
as the shear modulus decreased, log~1/h! decreases. Once thi
number approaches the threshold for kinking, which is defined
the curve corresponding to the 13.5mm glass fiber composites, th
specimens start to fail by kinking. This corroborates with the e
perimental observations made by Piggott@10# and Yerramalli and
Waas@11#.

As mentioned in the previous section, the accuracy of the tr
sition zone width is dependent on the experimental data availa
in the literature. Therefore, a sensitivity analysis ofh is in order to
understand the influence of each parameter. Sinceh5g f /Gc2r 0 it
follows that

Fig. 10 Variation of the nondimensional number h for different
material systems
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dh5
dg f

Gcr 0
2

2g fdGc

Gc
2r 0

2
2g fdr0

Gcr 0
2

. (4)

Thus, for fixedGc and r 0 , dh5dg f /Gcr 0 . Consequently, a
10% uncertainity ing f , translates to a 10% uncertainity inh.
Similarly, the uncertainities inGc andr 0 can be used to calculat
the uncertainities inh. It can be seen from Eq.~4!, that the
dh/dGc is inversely proportional to the square ofGc and r 0 .
Thus, indicating that the failure mechanism is highly sensitive
the geometric properties of fiber and the shear modulus of
composite.

The implications ofh for the design of composites is now ev
dent. As shown through the experimental results, carbon com
ites failed by kinking throughout theVf examined. Yet, as indi-
cated by Eq.~1!, the splitting compressive strength of carbo
composites is several times larger than the kinking strength~Eq.
~2!!. Thus it is desirable todesigncomposites such that they wil
fail by splitting. This implies a need to reduceh for carbon com-
posites. A reduction is possible by either increasing the value
Gc or reducing the value of surface modulusg f /r 0 . Experimental
results with Boron fiber composites, as described in Schutz@5#
and Reed and Golda@31#, show an elevated compressive streng
when compared to similar composites with smaller fiber diame
Similarly, as shown in Fig. 5, atVf560%, the larger diamete
glass composites failed at a higher compressive stress than
smaller diameter glass composites~at the same fiber volume frac
tion!. Thus, carbon fibers with a larger diameter will exhibit
higher compressive strength than their smaller~5 mm! diameter
counterparts. One cannot keep increasing the fiber diamete
definitely, however, without considering other strength limitin
mechanisms such as interior fiber defects which will increase
tistically with an increase in material volume.

6 Conclusions
A new nondimensional numberh has been presented to classi

the compression failure mechanism of continuous fiber reinfor
composites. This number was used to explain the causes fo
different failure mechanisms observed during compression tes
of polymer matrix composites. Results from the open literatu
and from an experimental program that studied the effect of fi
diameter, fiber properties and the type of loading were used
verify the predictions made by usingh. It can be concluded from

Fig. 11 Variation of nondimensional number for glass com-
posites as a function of shear modulus at fixed Vf
MAY 2004, Vol. 71 Õ 407
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this study that the fiber diameter, the matrix~and hence the com
posite! shear response~which is influenced by initial fiber mis-
alignment! and the fiber-matrix interface fracture energy all pl
an important role in influencing the failure mechanism and he
the compressive strength. For the same material system~fiber ma-
trix! a change in failure mode can be obtained, for example,
changing the fiber diameter or the interface fracture energy.
similar vein, the matrix shear properties are also significan
controlling the failure mechanism, and thus the composite co
pressive strength.
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Virtual Circular Dislocation-
Disclination Loop Technique in
Boundary Value Problems in the
Theory of Defects
A technique for elastic boundary value problem solutions for defects in solids is d
oped. The method is based on the introduction of virtual circular dislocation-disclina
loops distributed continuously for satisfying the prescribed boundary conditions at
surfaces and interfaces. The set of dislocation-disclination loops which may be us
virtual ones is considered. The elastic fields and energies of the selected dislocatio
disclination loops are presented. The method of the virtual circular dislocati
disclination loops is then applied to obtain the elastic fields and energies of a sphe
dilatating inclusion in a plate and a half-space, of a prismatic dislocation loop paralle
free surfaces of a plate and a half-space, and the elastic fields of a twist disclination
coaxial to a cylinder.@DOI: 10.1115/1.1757488#
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1 Introduction
At present the technique of surface virtual defects to so

boundary problems in the theory of defects in solids is w
known. It was originally formulated by Louat@1# and then devel-
oped by Marcinkowski in the case of surface dislocations,@2#. The
generalization of this method for surface disclinations and for s
face flux lines in type II superconductors was given by Roman
and Vladimirov@3# and Vladimirov et al.@4#, respectively.

The technique proceeds as follows: the field~e.g., elastic or
magnetic! of the real defect in the medium with internal and e
ternal boundaries can be found as sum of the field of the defe
an infinite medium and a field of surface~virtual! defects. Natu-
rally this method can be used for the evaluation of elastic field
a nonsingular nature, e.g., for a prescribed distribution of surf
loads or displacements.

The appropriate virtual defects have field components, wh
contribute to the boundary conditions. They are distributed c
tinuously with an unknown distribution. In terms of these dist
bution functions, the boundary conditions are expressed as
gral equations. The singular lines of the virtual defects
external to the considered medium~in the case of free surface
they can be placed on the surfaces, so these defects are n
surfacedefects!. The integral equations can be solved for virtu
defect distributions, and therefore their fields can be found.
nally, the fields of the real crystal lattice defects may be found

The method of surface straight defects was successfully app
to find the elastic and magnetic fields of real defects, i.e., dislo
tions, disclinations, flux lines in type II superconductors para
to free surfaces and interfaces,@4–7#. The method was used b
Belov, Chamrov, Indenbom, and Lothe@8# in the cases of straigh
dislocations emerging at planar boundaries by applying the te
nique involving surface dislocation segments. In our previo
work, we proposed to explore virtual surface circular dislocatio
disclination loops in the solution of boundary problems f
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straight-line defects in solids,@9–11#, e.g., the elastic field of edge
dislocations and wedge disclinations normal to the surfaces
plate were determined for the first time. Louat and Sadana
used surface dislocation loops to solve the problem of a sphe
inclusion in a half-space,@12#.

The present work deals with the development of a techni
using virtual dislocation-disclination loops along with a demo
stration of new solutions. In the first part of this paper, we cal
late the elastic fields of particular dislocation-disclination loops
infinite media by the Mura method~see Section 2! and determine
the type of the boundary value problems which may be sol
with the help of circular dislocation-disclination loops. In the se
ond part, we demonstrate the applications of this method for
termining the elastic fields and energies of a dilatating spher
inclusion in a plate and a half-space, of a prismatic dislocat
loop parallel to the free surfaces of a plate and a half-space,
the elastic fields of a twist disclination loop coaxial to a cylind

The technique developed here and the associated results h
variety of possible applications in solid state mechanics and ph
ics. The elastic fields and energy of a dilatating inclusion in a pl
are useful for the analysis of the elastic behavior of nanoparti
in thin films. The displacements can be explored to determine
corrugation of film surfaces due to embedded nanoparticles.
associated elastic strains modify the physical properties of
material both inside and outside the inclusion. For example,
electronic properties, such as the band gap, can be substan
changed in the case of quantum dots, which from a mechan
point of view are nanosize dilatating inclusions. The elastic d
placements of the circular prismatic dislocation loop in thin film
are necessary for correct identification of such defects. Mod
transmission electron microscopy~TEM! permits precise experi-
mental determination of the TEM contrast~image! related to the
presence of the defect in a thin film. For a detailed understand
of the TEM contrast, the defect displacement field must be kno
Therefore the elastic fields for a prismatic a dislocation loop i
plate can be utilized for modeling the TEM contrast and the f
lowing comparison with experimental observations. In additio
the elastic stresses and energy of the prismatic dislocation
can be applied effectively for analyses of relaxation proces
near nanosize clusters in semiconductor thin films. Finally,
solution of the twist disclination loop in a cylinder can be appli
when considering the twist of polymer macro-molecules in me
size fibrils.
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All of our results for dislocation-disclination loops are derive
in the framework of isotropic linear elasticity. The compact form
for the elastic fields of the dislocation-disclination loops invol
the Lipschitz-Hankel integrals,@13–17#. The properties of inte-
grals of this type were investigated by Eason, Noble, and Sned
@18#. Their utility in writing the elastic fields of circular disloca
tion loops was first carried out by Salamon and Dundurs@13#.

2 Circular Dislocation-Disclination Loops as Virtual
Defects: Classification and Elastic Fields of the Loops

2.1 Plastic Distortion and the Mura Method. Toshio
Mura defined the plastic distortionb i j* for dislocations and discli-
nations in the following form,@19#:

b i j* 5d i~S!@2bj2ejpqvp~xq2xq
0!#, (1)

whered i(S)5*Si
d(r2r 8)dSi8 , d~r2r8! is the three-dimensiona

delta-function,Si is the cut-surface with normalni , bj is the
Burgers vector of a dislocation,vp is the Frank vector of a dis
clination,xq

0 is the coordinate of the rotation axis, andejpq is the
permutation tensor. In Eq.~1!, the term in the rectangular bracke
represents the jump of displacements@uj # at the cut-surfaceSi
related to the defect. In@19#, the jump of displacements has th
opposite sense; this is due to the definition of upper and low fa
of the cut-surface~compare@19# and @9#!. In general, the appear
ance of a defect in a continuum can be decomposed into the
following steps:~i! make a cut alongSi ; ~ii ! displace the upper
faceSi

1 relative to the low faceSi
2 by value@uj #; ~iii ! insert ~or

remove! the material into the holes which arise~or from the areas
of overlap!; and ~iv! ‘‘glue’’ the material at Si

1 and Si
2 . As a

result of this procedure, a defect with plastic distortionb i j* is
generated.

The plastic distortionb i j* allows one to obtain the total dis
placement fieldum , @19#:

um~r 8!52 i EEE
2`

`

j lCjikl Lmkb̄ i j* exp~ ij•r !djxdjydjz , (2)

where Cjikl are the elastic constants;Lmk and b̄ i j* are Fourier
transforms of the Green’s functionGkm and plastic distortionb i j* ,
respectively, andj•r5jxx1jyy1jzz. For an isotropic medium
we have

Cjikl 5
2Gn

122n
d j i dkl1G~d ikd j l 1d i l d jk!;

Lmk5
1

~2p!3/2

2~12n!j2dmk2jmjk

2~12n!Gj4
, (3)

whereG is shear modulus,n is Poisson ratio,dkm is the Kroneker
delta, andj25jx

21jy
21jz

2. Equations~2! and~3! can be then used
to obtain the elastic fields of dislocations, disclinations, a
Somigliana dislocations of arbitrary configuration in an infin
isotropic medium, and in particular, circular defect loops.

2.2 Elastic Fields of Circular Loops. In Fig. 1 we present
some examples of circular defect loops. The loops have pla
distortions depending linearly on the radial coordinater and have
trigonometric multipliers cosw and sinw in Cartesian (x,y,z) and
cylindrical (r ,w,z) coordinate systems. In fact, the plastic disto
tions for these loops are initial terms of the Fourier expansion
written as

bz j* 5A01A1 cosw1B1 sinw, j 5x,y,z or j5r ,w,z

A05A15B15~b1vr !HS 12
r

aD d~z!, (4)
410 Õ Vol. 71, MAY 2004
d
s
e

don

s

e
ces

four

nd
te

stic

r-
are

whereb is a magnitude of the Burgers vector,v is a value of the
Frank vector,H(12r /a) is the Heaviside step function,d(z) is
the one-dimensional delta-function, anda is the loop radius. In the
framework of the chosen coordinate system~Cartesian or cylin-
drical!, the plastic distortions given by Eqs.~4! are linearly inde-
pendent. Some of the loops associated with these distortions
ordinary dislocation and disclination loops, as shown in Figs. 1~a!
and~b!, respectively; others are Somigliana dislocation loops~see,
for example, Fig. 1~c!!. The elastic fields and energies for oth
defect loops not shown in Fig. 1 can be found in earlier wo
@9,11#.

For the purpose of the present research, we consider only
prismatic dislocation loop, the twist disclination loop, and the
dial disclination ~Somigliana dislocation! loop. These loops are
used as real loops and as virtual defect loops in the solution
axisymmetric boundary value problems.

2.2.1 Prismatic Dislocation Loop.The plastic distortion of
the interstitial prismatic dislocation loop~Fig. 1~a!! is

bzz* 5bHS 12
r

aD d~z!. (5)

With the help of the Mura technique we find the total displac
ment field:

ur5
b

4~12n! F ~2n21!J~1,1;0!1
uzu
a

J~1,1;1!G ;
uw50;

uz5
b sgn~z!

4~12n! F2~12n!J~1,0;0!1
uzu
a

J~1,0;1!G . (6)

Here

sgn~z!5H 21, z,0,

11, z.0,
J~m,n;p!

are Lipschitz-Hankel integrals,@18#, given by J(m,n;p)
5*0

`Jm(k)Jn(kr /a)exp(2kuzu/a)kpdk, and Jm(k) is the Bessel
function.

In the framework of linear elasticity and applying Hooke’s la
for isotropic materials we find the elastic strains« i j and stresses
s i j . The stresses are

Fig. 1 Dislocation-disclination loops being used as virtual de-
fects in solutions of elastic boundary value problems. „a… Pris-
matic dislocation loop. „b … Twist disclination loop. „c … Radial
disclination loop „Somigliana dislocation …. The displacement
jumps at the cut-surfaces are shown schematically.
Transactions of the ASME
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s rr 5
Gb

2~12n! F122n

r
J~1,1;0!1

uzu

a2
J~1,0;2!2

1

a
J~1,0;1!

2
uzu
ar

J~1,1;1!G ;

sww5
Gb

2~12n! F2n21

r
J~1,1;0!2

2n

a
J~1,0;1!1

uzu
ar

J~1,1;1!G ;
(7)

szz52
Gb

2~12n! F1

a
J~1,0;1!1

uzu

a2
J~1,0;2!G ;

s rz52
Gb

2~12n!

z

a2
J~1,1;2!;

szw5s rw50.

The stresses given by Eqs.~7! satisfy the equations of equilibrium
Note that Eqs.~6! and~7! are equivalent to the formulas obtaine
by Dundurs and Salamon@13,14# and Salamon and Comnino
@15# for a prismatic dislocation loop in two-phase material wh
the phases possess identical elastic properties.

2.2.2 Twist Disclination Loop. The twist disclination loop
shown in Fig. 1~b! has the plastic distortion:

bzw* 5vrH S 12
r

aD d~z!. (8)

In this case the total displacements have the following sim
form:

uw5
va

2
sgn~z!J~2,1;0!;

ur5uz50, (9)

and the stresses are

s rw52
Gv

2
sgn~z!J~2,2;1!;

szw52
Gv

2
J~2,1;1!;

s rr 5sww5szz5s rz50. (10)

2.2.3 Radial Disclination Loop. Consider the radial disclina
tion loop ~Somigliana dislocation!, which can be defined by the
procedure depicted in Fig. 1~c!. The plastic distortion of this loop
defect is

bzr* 5vrH S 12
r

aD d~z!. (11)

The total displacements of the radial disclination loop are giv
by

ur5
va sgn~z!

4~12n! F2~12n!J~2,1;0!2
uzu
a

J~2,1;1!G ;
uw50;

uz5
va

4~12n! F ~2n21!J~2,0;0!2
uzu
a

J~2,0;1!G . (12)

The stress field is
Journal of Applied Mechanics
.
d

n
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en

s rr 5
Gv sgn~z!

2~12n! F2~n21!
a

r
J~2,1;0!2

uzu
a

J~2,0;2!12J~2,0;1!

1
uzu
r

J~2,1;1!G ;
sww5

Gv sgn~z!

2~12n! F2~12n!
a

r
J~2,1;0!2

uzu
r

J~2,1;1!

12nJ~2,0;1!G ;
(13)

szz5
Gv

2~12n!

z

a
J~2,0;2!;

s rz5
Gv

2~12n! F uzu
a

J~2,1;2!2J~2,1;1!G ;
s rw5szw50.

3. The Virtual Circular Dislocation-Disclination Loop
Method

In the framework of the virtual defect method the elastic fie
pi j ~displacements, distortions, strains, and stresses! of the real
defect placed in the medium with free surfaces and interface
presented as

pi j 5
`pi j 1

i pi j , (14)

where `pi j is the field of the real defect in an infinite medium
without interfaces andi pi j is the additional field, due to ensemble
of virtual defects distributed continuously with unknown distrib
tion functions kf ~index k is a counter for virtual defect en
sembles!. The boundary conditions at the free surfaces and in
facespi j uS5a are then rewritten with respect to Eqs.~14!, and
become integral equations for the unknown distribution functio
Virtual defects are placed outside the medium in which their e
tic fields act. In the limit case, they can be placed directly on f
surfaces. The problem exists of how to choose the appropr
defects as virtual ones.

For cylindrical symmetry problems the external and intern
surfaces can be planar, cylindrical, spherical; and the real def
can be point defects, straight linear and circular loop defe
volumetric cylindrical, spheroidal, and two-axes ellipsoidal d
fects. In the case when the combination of the boundaries and
defects have cylindrical symmetry we arrive at a problem of
lindrical symmetry. For point and volume defects we have ad
tional requirements concerning their plastic distortions. These
tortions must admit their representations via distortions of circu
defect loops distributed continuously while retaining cylindrica
symmetric geometry.

In solving boundary value problems with cylindrical symmetr
we introduce dislocation-disclination loops as virtual defects.
this article we consider two possibilities:~i! the distribution func-
tions kf depend on the loop radius and~ii ! the distribution func-
tions kf depend on the position of the virtual loop.

For planar boundaries, ensembles of virtual circular loops
placed either on free surfaces or at some distance from the in
faces, @12–14#. Then the boundary conditions lead to integr
equations for unknown radius-dependent distribution functionskf :

`pi j uS1(
k

E
0

`
kf ~a!kpi j uSda5a, (15)

wherea is the loop radius, andkpi j is a field due to the virtual
loop from thekth ensemble. It is necessary that the angular
pendence of the elastic field components of the virtual defe
corresponds to the angular dependence of the elastic field com
nents of the real defect. Since the elastic fields of the circu
MAY 2004, Vol. 71 Õ 411
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loops have the Lipshitz-Hankel integral representation, it is e
cient to apply the Hankel-Bessel transformation to Eqs.~15!. The
direct and reverse Hankel-Bessel transformations are define
e.g.,@20#:

Hn~l!5E
0

`

c~r !Jn~rl!rdr , (16)

c~r !5E
0

`

Hn~l!Jn~rl!ldl, (17)

whereHn(l) is Hankel-transform of the functionc(r ). The index
n indicates the kind of Bessel functionJv(lr ) used in the core of
the transformation.

In the case of cylindrical surfaces, ensembles of the virt
circular loops are placed on cylindrical surfaces and transform
boundary conditions to integral equations for unknow
coordinate-dependent distribution functions:

`pi j uS1(
k

E
2`

`
kf ~z0!kpi j ~z2z0!uSdz05a. (18)

Equation~18! are solved with the help of the Fourier transform
tion.

The boundary conditions on the interfaces are usually give
terms of displacements or tractions. The number of necessary
families corresponds to the number of the boundary conditions
the surface. For instance, in the case of an internal phase boun
between medium I and II there are six sets of boundary co
tions: three conditions for displacements and three conditions
stress components. Therefore, the number of virtual loop fam
is six, but it is enough to use only three types of virtual loo
Three loop distributions are located in medium I and influen
medium II and three loop distributions are located in medium
and influence medium I. In the case of a free surface there
three conditions for the components of the traction vector. The
fore the maximum number of virtual loop families is three.
general, the number of boundaries does not influence the num
of virtual defect types. As a result, prismatic dislocation loo
twist disclination loops, and radial disclination~Somigliana dislo-
cation! loops may be used as virtual defects in polar angle in
pendent elastic problems of cylindrical symmetry. For defe
with angle-dependent elastic fields, e.g., edge dislocations,
can utilize another set of virtual loops having the same an
dependence, e.g., glide dislocation loops,@9,11#.

4 Elastic Fields and Energies of Defects in Axisym-
metrical Problems

4.1 Spherical Inclusion in a Plate and a Half-Space. Con-
sider a spherical dilatating inclusion located in a plate of thickn
t as shown in Fig. 2. The plastic distortion of the inclusion
bxx* 5byy* 5bzz* 5«* d(Vsph), where d(Vsph)5$0,r¹Vsph

1,rPVsph%, Vsph is

the area of the inclusion; and«* 5DR/R characterizes the relativ
change of the inclusion radius. The latter may also be interpre
as the misfit strain characterizing crystal lattice mismatch betw
the inclusion and the surrounding matrix. Referring to the geo
etry and coordinate system shown in Fig. 2 and assuming tha
elastic properties of the inclusion and surrounding matrix are
same, the total displacements`uj and elastic stresses`s i j of an
inclusion in infinite media are,@21#:
412 Õ Vol. 71, MAY 2004
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`ur
~ in!5

«* ~11n!Rsph

3~12n!
• r̃ ;

`uw
~ in!50;

`uz
~ in!5

«* ~11n!Rsph

3~12n!
•~ z̃2h̃!;

`ur
~out!5

«* ~11n!Rsph

3~12n!
•

r̃

~ r̃ 21~ z̃2h̃!2!3/2
;

`uw
~out!50;

`uz
~out!5

«* ~11n!Rsph

3~12n!
•

z̃2h̃

~ r̃ 21~ z̃2h̃!2!3/2
• (19)

`s rr
~ in!5`sww

~ in!5`szz
~ in!52

4G«* ~11n!

3~12n!
;

`s rz
~ in!5`s rw

~ in!5`szw
~ in!50;

`s rr
~out!5

2G«* ~11n!

3~12n! S 2
2

~ r̃ 21~ z̃2h̃!2!3/2
1

3~ z̃2h̃!2

~ r̃ 21~ z̃2h̃!2!5/2D ;

`sww
~out!5

2G«* ~11n!

3~12n!
•

1

~ r̃ 21~ z̃2h̃!2!3/2
;

`szz
~out!5

2G«* ~11n!

3~12n! S 1

~ r̃ 21~ z̃2h̃!2!3/2
2

3~ z̃2h̃!2

~ r̃ 21~ z̃2h̃!2!5/2D ;

(20)

`s rz
~out!5

2G«* ~11n!

3~12n! S 23r̃ ~ z̃2h̃!

~ r̃ 21~ z̃2h̃!2!5/2D ;

`s rw
~out!5`szw

~out!50.

Here superscripts~in! and~out! designate the solutions inside an
outside the inclusion, respectively. We use normalized variab
r̃ 5r /Rsph, z̃5z/Rsph, h̃5h/Rsph, and Rsph is the radius of the
spheroid. We work in a cylindrical coordinate system, with co
dinatesr, w, andz.

On the free surface of the plate the following boundary con
tions for the total stress fields i j 5

`s i j 1
is i j must hold:

s jzu$z50
z5t %50, j 5r ,w,z. (21)

Fig. 2 Spherical inclusion in a plate. Distributions of virtual
loop defects are shown on the plate surfaces.
Transactions of the ASME
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The inclusion stresses`szz and`s rz given by Eqs.~20! contribute
to the boundary conditions given in Eqs.~21!. To satisfy the
boundary conditions we assume that an additional fieldis i j is
generated by the distributions of circular prismatic dislocat
loops ~ensemble 1! and radial disclination loops~ensemble 2!,
placed on the free surfaces of the plate~see Fig. 2!. These virtual
o

n
l
s
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on

defects possess stress componentsszz and s rz and a component
swz vanishes. Rewriting Eqs.~21! with the help of the fields of the
virtual loops we obtain the integral equations with respect to
known functions of loop distributions12 f (a), 22 f (a) placed on
the surfacez50 and 11 f (a), 21 f (a) placed on the surfacez
5t:
,

`szz
~out!uz501E

0

`
12 f ~a!•12szzuz50da1E

0

`
11 f ~a!•11szzuz50da1E

0

`
22 f ~a!•22szzuz50da1E

0

`
21 f ~a!•21szzuz50da50;

`szz
~out!uz5t1E

0

`
12 f ~a!•12szzuz5tda1E

0

`
11 f ~a!•11szzuz5tda1E

0

`
22 f ~a!•22szzuz5tda1E

0

`
21 f ~a!•21szzuz5tda50;

(22)

`s rz
~out!uz501E

0

`
12 f ~a!•12s rzuz50da1E

0

`
11 f ~a!•11s rzuz50da1E

0

`
22 f ~a!•22s rzuz50da1E

0

`
21 f ~a!•21s rzuz50da50;

`s rz
~out!uz5t1E

0

`
12 f ~a!•12s rzuz5tda1E

0

`
11 f ~a!•11s rzuz5tda1E

0

`
22 f ~a!•22s rzuz5tda1E

0

`
21 f ~a!•21s rzuz5tda50,

whereks jzuz50 andks jzuz5t (k511, 12, 21, 22; j 5z,r ) are stresses of the virtual loops from ensembles 1~index 1! and 2~index
2! on the surfacesz50 ~index 2! andz5t ~index 1!.

To proceed further we substitute Eqs.~7!, ~13! into Eqs.~22!, introduce a new variableb5k/a, change the order of the integration
and transform Eqs.~22! with the help of Hankel-Bessel transformation Eq.~16! with the coreJ0(rb) for the first pair of equations and
J1(rb) for the second pair. Finally, we obtain a system of algebraic equations for functions12H, 11H, 22H, 21H, with 12,11H
5*0

` 12,11 f (a)J1(ab)ada and22,21H5*0
` 22,21 f (a)J2(ab)a2da:

2
2G«* ~11n!Rsph

3

3~12n!
bE12

Gb

2~12n!
•

12H2
Gb

2~12n!
~11tb!E0•

11H2
Gv

2~12n!
tbE0•

21H50;

2
2G«* ~11n!Rsph

3

3~12n!
b

E0

E1
2

Gb

2~12n!
~11tb!E0•

12H2
Gb

2~12n!
•

11H1
Gv

2~12n!
tbE0•

22H50;
(23)

2G«* ~11n!Rsph
3

3~12n!
bE11

Gb

2~12n!
tbE0•

11H2
Gv

2~12n!
•

22H2
Gv

2~12n!
~12tb!E0•

21H50;

2
2G«* ~11n!Rsph

3

3~12n!
b

E0

E1
2

Gb

2~12n!
tbE0•

12H2
Gv

2~12n!
~12tb!E0•

22H2
Gv

2~12n!
21H50,

whereE05exp@2tb# andE15exp@2hb#.
Solving this system we find

12H5
4«* ~11n!Rsph

3

3b
•

E1b@211E0
2E1

22~112tb!2E0
4E1

221E0
2~122tb!#

~12E0
2!224E0

2t2b2
;

11H5
4«* ~11n!Rsph

3

3b
•

E0
21E1b@2E0

42E0
2E1

221E0
4E1

22~122tb!1E0
2~112tb!#

~12E0
2!224E0

2t2b2
;

(24)

22H5
4«* ~11n!Rsph

3

3v
•

E1b@11E0
2E1

22~122tb!2E0
4E1

222E0
2~112tb!#

~12E0
2!224E0

2t2b2
;

21H5
4«* ~11n!Rsph

3

3v
•

E0
21E1b@E0

42E0
2E1

221E0
4E1

22~112tb!2E0
2~122tb!#

~12E0
2!224E0

2t2b2
.

bu-

tat-
Equations~23! can be considered a general system for a pr
lem of cylindrical symmetry for defects in a plate for which`szz

and `s rz are the relevant stress components in boundary co
tions given by Eqs.~21!. To treat the other defect one shou
rewrite the free terms, which are the Hankel-Bessel transform
the stresses, i.e.,*0

`J0(rb)`szzuz50rdr , *0
`J0(rb)`szzuz5trdr ,

*0
`J1(rb)`s rzuz50rdr , *0

`J1(rb)`s rzuz5trdr , of the considered
real defect.
b-

di-
d

of

Using the normalized Hankel-Bessel transforms of the distri

tion functions12H̃, 11H̃, 22H̃, 21H̃, i.e., the second multipliers
in the right hand side of Eqs.~24!, and the elastic fields of the
prismatic dislocation loop given by Eqs.~6! and ~7! and radial
disclination loop given by Eqs.~12! and~13!, one can easily find
the additional fields of the displacementsiuj and stressesis jk of
the virtual surface loops. Finally, the displacements for the dila
ing inclusion in the plate are
MAY 2004, Vol. 71 Õ 413
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ur5
`ur1

«* ~11n!Rsph
3

3~12n! F ~2n21!E
0

`

J1~rb!S 12H̃E2

111H̃
E0

E2
Ddb1E

0

`

J1~rb!S 12H̃zbE2111H̃~ t

2z!b
E0
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where E25exp@2zb#. Inside and outside the inclusion`uj

5`uj
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The corresponding stress field has the following form:

s rr 5`s rr 1
2G«* ~11n!Rsph

3

3~12n! F122n

r E
0

`

J1~rb!S 12H̃E2

111H̃
E0

E2
Ddb1E

0

`

J0~rb!S 12H̃zbE2111H̃~ t

2z!b
E0

E2
Dbdb2E

0

`

J0~rb!S 12H̃E2111H̃
E0

E2
Dbdb

2
1

r E0

`

J1~rb!S 12H̃zbE2111H̃~ t2z!b
E0

E2
Ddb

1
2~n21!

r E
0

`

J1~rb!S 22H̃E2221H̃
E0

E2
Ddb2E

0

`

J0~rb!

3S 22H̃zbE2221H̃~ t2z!b
E0

E2
Dbdb12E

0

`

J0~rb!

3S 22H̃E2221H̃
E0

E2
Dbdb1

1

r E0

`

J1~rb!S 22H̃zbE2

221H̃~ t2z!b
E0

E2
DdbG ;

sww5`sww1
2G«* ~11n!Rsph

3

3~12n! F2n21

r E
0

`

J1~rb!S 12H̃E2

111H̃
E0

E2
Ddb22nE

0

`

J0~rb!S 12H̃E2111H̃
E0

E2
Dbdb

1
1

r E0

`

J1~rb!S 12H̃zbE2111H̃~ t2z!b
E0

E2
Ddb
414 Õ Vol. 71, MAY 2004
1
2~12n!

r E
0

`

J1~rb!S 22H̃E2221H̃
E0

E2
Ddb

12nE
0

`

J0~rb!S 22H̃E2221H̃
E0

E2
Dbdb2

1

r E0

`

J1~rb!

3S 22H̃zbE2221H̃~ t2z!b
E0

E2
DdbG ;

szz5
`szz2

2G«* ~11n!Rsph
3

3~12n! F E
0

`

J0~rb!S 12H̃E2

111H̃
E0

E2
Dbdb1E

0

`

J0~rb!S 12H̃zbE2111H̃~ t

2z!b
E0

E2
Dbdb2E

0

`

J0~rb!S 22H̃zbE2221H̃~ t

2z!b
E0

E2
DbdbG ; (26)

s rz5`s rz2
2G«* ~11n!Rsph

3

3~12n! F E
0

`

J1~rb!S 12H̃zbE2211H̃~ t

2z!b
E0

E2
Dbdb2E

0

`

J1~rb!S 22H̃zbE2121H̃~ t

2z!b
E0

E2
Dbdb1E

0

`

J1~rb!S 22H̃E2121H̃
E0

E2
DbdbG ;

szw5s rw50, 0<z<t, Rsph<h<t2Rsph.

The stresses given by Eqs.~26! satisfy boundary conditions ex
pressed in Eqs.~21! and the equilibrium equations.

In the limit case when the plate thicknesst→` we find the
displacements and the stresses of the inclusion in a half-spac
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The results of Eqs.~27! and Eqs.~28! can be compared with the
general results obtained by Seo and Mura for an ellipsoidal in
sion, @22#.

The elastic energy of an arbitrary defect is defined as,@19#
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whereV is the entire volume of the medium.
Utilizing Eqs. ~26! or Eqs.~28! we find the energy of the di-

latating inclusion in a plate or in a half-space. The energy of
inclusion in a half-space is
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Here the first term is the energy of inclusion in infinite mediu
and the second term is the interaction energy between inclu
and the free surface.

4.2 Prismatic Dislocation Loop in a Plate and in a Half-
Space. Consider an interstitial prismatic dislocation circul
loop with radiusa0 that is parallel to the free surfaces of a plate
Journal of Applied Mechanics
lu-
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ion

r
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thickness t ~Fig. 3!. The center of the loop has coordinate
(0,0,h). The plastic distortion of the loop, its total displacemen
`ui , and elastic stresses`s i j in an infinite medium are given by
Eqs.~5!–~7! by replacingz with z2h. For satisfying the boundary
conditions Eqs.~21! we again represent the resulting elastic fie
as a sum of the loop field in an infinite medium and an additio
field due to the distributions of virtual loops. In this problem w
use prismatic dislocation loops and radial disclination loops
virtual defects. The solution of this boundary problem is similar
that of the spherical inclusion.

Substituting the free terms in Eqs.~23! for 2(Gb/2(1
2n))a0J1(a0b)(11hb)E1 , 2(Gb/2(12n))a0J1(a0b)(11(t
2h)b)E0 /E1 , 1(Gb/2(12n))a0J1(a0b)hbE1 , and
2(Gb/2(12n))a0J1(a0b)(t2h)bE0 /E1 and solving the result-
ing system we find12H, 11H, 22H, 21H for the case of pris-
matic loop in a plate. The normalized functions12H̃, 11H̃, 22H̃,
21H̃ appearing in expressions for the displacements given by E
~25! and stresses Eqs.~26! are

Fig. 3 Prismatic dislocation loop in a plate. Distributions of
virtual loop defects are shown on the plate surfaces.
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Finally, the displacements of the interstitial prismatic loop
the plateuj acquire the form of Eqs.~25! with `uj taken from
Eqs. ~6! and replacing the coefficient«* (11n)Rsph

3 /3(12n)
inby b/4(12n).

The stresses due to the prismatic loop in the plate may be fo
in a similar manner.
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In the limit when the plate thicknesst→`, we obtain the dis-
placements and elastic stresses of the prismatic loop in a
space:
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szw5s rw50, 0<z.

Here J* (m,n;p)5*0
`Jm(k)Jn(kr /a0)exp(2kuz2hu/a0)k
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The solutions expressed in Eqs.~32! and Eqs.~33! are compact;
they satisfy the boundary conditions Eqs.~21! and the equilibrium
equations. They may be compared with expressions given
Dundurs, and Salamon@14#.

The energy of the prismatic loop in a half-space has the follo
ing form:
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wherer core is the core cutoff radius of the loop.
The first term in Eq.~34! is the energy of the prismatic dislo

cation loop in an infinite medium and the second term is
interaction energy between the prismatic loop and the free surf

4.3 Twist Disclination Loop Coaxial to a Circular Cylin-
der. Consider a twist disclination loop of radiusa0 placed co-
axially in an infinitely long elastic circular cylinder of radiusr 0 as
shown in Fig. 4; the coordinates of the loop center are~0,0,0!. On
the free surface of the cylinder, the following boundary conditio
for the stress field must be fulfilled:

s r j ur 5r 0
50, j 5r ,w,z. (35)

The twist disclination loop has the stress components rw ~see Eqs.
~10!! contributing to the conditions Eqs.~35!. We present the re-
sulting field of the twist disclination loop in the cylinder in th
form of Eqs. ~15!. The additional fieldi pi j is produced by the
virtual twist loops distributed in the manner shown in Fig. 4. A
virtual loops have the same radiusr 0 . Then the boundary condi
tions Eqs.~35! can be rewritten in terms of the distribution func
tion f (z0) of the virtual twist disclination loops:

Fig. 4 Twist disclination loop of radius a0 coaxial to a cylinder.
Distribution of virtual twist disclination loops is shown on cyl-
inder surface.
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Applying the Fourier transformation to Eq.~36!, one can find
the Fourier transform of the distribution functionf̂ . The Fourier
transforms of the elastic fields~i.e., displacements, distortions
strains, and stresses! due to virtual loop distributions are writte
as

i p̂i j ~r ,s!5A2p f̂ ~s!p̂i j ~r ,s!. (37)

Here p̂i j (r ,s) are Fourier transforms of the elastic fields of t
single virtual twist disclination loop.

Finally, the stresses of the twist disclination loop are
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s rr 5sww5szz5s rz50.

On the basis of Eqs.~29!, ~8!, and ~38!, the energy of the twist
disclination loop in a cylinder can be calculated.

If we takea0@r core as an approximation, the energy is
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(39)

Here the term in circular brackets is the energy of the twist loop
an infinite medium, and the integral term is the energy of inter
tion between the loop and cylindrical free surface.

5 Concluding Remarks
The virtual circular loop technique is an effective tool for th

solution of the boundary value problems of cylindrical symme
in the theory of defects. The technique is based on the introd
tion of virtual circular dislocation-disclination loop distribution
for satisfying the boundary conditions on free surfaces and in
faces. The distributions of virtual defects are placed on the pla
~in the case of plane free surfaces and interfaces! and on cylindri-
cal surfaces~in the case of cylindrical free surfaces and inte
faces!. The boundary conditions written in terms of virtu
dislocation-disclination loops distributions give integral equatio
for distribution functions depending on the loop radius~in the case
of plane surfaces and interfaces! and for distribution functions
depending on the loop coordinate~in the case of cylindrical free
surfaces and interfaces!. In this work, a prismatic dislocation loop
a twist disclination loop, and a radial disclination loop~Somigli-
Journal of Applied Mechanics
,

e

in
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e
ry
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nes
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ns

,

ana dislocation! have been used as virtual defects for obtaining
elastic fields of a spherical inclusion and a prismatic dislocat
loop in a plate and a half-space, and the elastic fields a tw
disclination loop in an elastic cylinder.

In conclusion, we have developed the general technique of
cular virtual dislocation-disclination loops for the solution of th
axisymmetrical elasticity boundary value problems.
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Discontinuities in the Sensitivity Curves
of Laminated Cylindrical Shells

Yiska Goldfeld
Research Scientist

Izhak Sheinman
Professor Faculty of Civil Engineering, Technion–Israel
Institute of Technology, 32000 Haifa, Israel

The discontinuity in the sensitivity of laminated cylindrical she
is investigated via the initial post-buckling analysis. A gene
procedure for sensitivity, based on Koiter’s parameters and us
the Donnell and Sanders shell theories, is developed and use
parametric study of the discontinuity phenomenon. It was fo
that the discontinuity occurs at points of change of the circum
ential wave number.@DOI: 10.1115/1.1748341#

Introduction
Shell-like structures are very sensitive to initial geometry i

perfections. One of the main goals, in this field, is to find t
various parameters that influence the shell’s sensitivity, ther
improving the behavior of the whole structure.

In the present note the characteristic behavior of the imper
tion sensitivity is investigated on the aid of Koiter’s asympto
theory, @1#. Koiter showed that the imperfection sensitivity of
structure is related to its initial post-buckling behavior, In oth
words, it is governed by the immediate slope at the bifurcat
point: if the latter is negative, the real buckling load will be le
than the theoretical one and the shell is sensitive. Accordin
fewer parameters are needed for characterizing the sensitivity
havior.

Here, the sensitivity curves of an isotropic and laminated cy
drical shell are studied in terms of the circumferential wave nu
ber ~CWN!. It was found,@2,3#, that discontinuities always occu
at points where the CWN is changed, and in the present note t
points are sought.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
12, 2002; final revision, October 25, 2003. Associate Editor: T. E. Triantifyllides
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Governing Equations
The governing equations are derived for the Donnell,@4#, and

Sanders,@5#, kinematic relations,@6#. They are obtained via the
variational principle for laminated cylindrical shell. Formulatio
of the two approaches is based on the displacement componen
the axial (u), circumferential (v), and normal~w! directions.

The equilibrium equations read:

Nxx,x1
Nxu,u

R
50

Nxu,x1
Nuu,u

R
1dFM uu,u

R2 1
Mxu,x

R
1

Nuu

R2 ~w,u2v !

2z
Nuu

R2 ~w,u2v !1
Nxu

R
w,xG50

Mxx,xx1
2Mxu,xu

R
1

M uu,uu

R2 2
Nuu

R
1~Nxxw,x! ,x1

~Nuuw,u! ,u

R2

1
~Nxuw,x! ,u

R
1

~Nxuw,u! ,x

R
2dF ~Nuuv ! ,u

R2 1
~Nxuv ! ,x

R G1qzz

50 (1)

with the following boundary conditions:

u or Nxx

v or Nxu1d
Mxu

R

w or Mxx,x1
2Mxu,u

R
1Nxxw,x1

Nxuw,u

R
2d

Nxuv
R

w,x or Mxx (2)

where
d50 for Donnell’s kinematic relations
d51 for Sanders’ kinematic relations.

z is a correction factor for the second theory (d51) in the
hydrostatic load case,@7,8#: z50 when the load remains paralle
to its original, andz51 when the load remains normal to th
deflected reference axis. The difference between the two vers
is most pronounced for thin rings.

st
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Initial Post-buckling
The imperfection sensitivity parameters determine whether

load increases or decreases after buckling. Accordingly, the
placement, strain and stress vectors are expanded according
following scheme:

H u
v
w
J 5lH u~0!

v ~0!

w~0!
J 1jH u~1!

v ~1!

w~1!
J 1j2H u~2!

v ~2!

w~2!
J 1 . . . . (3)

The load parameterl representing the deviation from the classic
buckling loadlc , and j being the perturbation parameter. Th
superscripts(0), (1) and (2) denote the prebuckling, buckling, an
initial post-buckling states, respectively.

Applying the variational principle following Budiansky an
Hutchinson,@9,10#, the load parameter is obtained as

Fig. 1 Sensitivity b parameter versus Batdorf Z-parameter for
simply supported „NxxÄNx uÄ0… cylindrical shell under hydro-
static pressure

Fig. 2 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported „NxxÄvÄ0… cylindrical
shell with l ÕRÄ3
Journal of Applied Mechanics
the
dis-
o the
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e
d

Fig. 3 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported „NxxÄvÄ0… cylindrical
shell with l ÕRÄ10

Fig. 4 „a… Axial buckling load and circumferential wave num-
ber versus angle ply for simply supported „vÄ0… cylindrical
shell with l ÕRÄ3 „b… Sensitivity a and b parameters versus
angle ply for simply supported „vÄ0… cylindrical shell with
l ÕRÄ3
MAY 2004, Vol. 71 Õ 419
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where a and b are known as the Koiter parameters. For isotr
cylindrical shells the coefficient a vanishes due to the periodi
of the buckling mode in the circumferential direction, but for
laminated cylindrical shell under axial compression it was fou
that it does not. As for the coefficient b a positive value indicates
that the shell is insensitive, a negative value measures the lev
sensitivity. For the linear prebuckling state Budiansky and Hut
inson derived the well-known formulas:

a52
3s1•L2~u1!

2lcs0•L2~u1!
(5)

b52
s2•L2~u1!12s1•L11~u1 ,u2!

lcs0•L2~u1!
. (6)

In terms of the displacement components the operator is writte

s i•L11~uj ,uk!5E
a

bE
0

2pH Nxx
~ i !@w,x

~ j !w,x
~k!#1Nuu

~ i !Fw,u
~ j !w,u

~k!

R2

2
d

R2 ~v ~ j !w,u
~k!1v ~k!w,u

~ j !!G
12Nxu

~ i !Fw,x
~ j !w,u

~k!

2R
1

w,x
~k!w,u

~ j !

2R
2

d

2R
~v ~ j !w,x

~k!

1v ~k!w,x
~ j !!G J dudx i, j ,k

50,1,2 (7)

The superscripts~i!, ~j!, and~k! denote the relevant state as abov
These equations are solved through expansion of the depen

variables in Fourier series in the circumferential direction and
finite differences in the axial direction. Afterwards the Galerk
procedure is used to minimize the error due to the truncated f
of the series.

Parametric Study
In order to locate the discontinuities in the sensitivity curv

one must first find the critical CWN which yields the minimu
buckling load; a change in the wave number causes a discon
ity in the slope of the buckling curve. After that, one must calc
late Koiter’s sensitivity parameters~Eqs. ~5! and ~6!!, using the
critical buckling load and its associated wave number, here ag
the sensitivity curve is characterized by a discontinuity, but unl
the buckling curves the discontinuity occurs in the curve itsel

For this purpose isotropic cylindrical shells and laminated tw
ply ~6a! angle-ply cylindrical shells under hydrostatic and ax
loading are considered, reproduced from Sheinman and Gold
@6#.

Hydrostatic Pressure. In the first case Budiansky an
Amazigo’s,@11#, simply supported isotropic cylindrical shell wa
reproduced here. At their work there was no consideration to
varying CWN and the sensitivity curve was continuous. Here,
Fig. 1, it is seen that the b parameter is highly dependent on
CWN and acquires a discontinuity on a change in the latter. T
not only the critical buckling load characterized by transaction
the CWN is dependent on the BatdorfZ-parameter, but the b
420 Õ Vol. 71, MAY 2004
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parameter~Eq. 6! as well. It is worth noting that in this exampl
Donnell’s and Sanders’ theories yield the same values.

In the second case~laminated cylindrical shell! the buckling
load and the b are plotted against the angle-ply~6a! in Figs. 2
and 3 forl /R53 and 10, respectively. It is seen that both of the
likewise highly dependent on the CWN, and the b parameter
quires a discontinuity as in the first case. It is found that the ini
circumferential internal force, Nuu affects it most.

Furthermore, it is seen that the buckling load and the sensiti
are also highly dependent on the angle ply. Regarding the se
tivity level, it is seen that the angle ply has the same effect a
stringer, namely, as it increases so does the buckling load w
the sensitivity decreases.

The different between Sanders’ and Donnell’s shell theorie
insignificant for buckling load but still Sanders’ yield lower va
ues, and quite pronounced for the b parameter; the more acc
the theory~Sanders!, the lower the sensitivity and the bucklin
load.

Axial Compression. The axial buckling load~applied by set-
ting Nxx5N̄xx at one edge!, the CWN, the a and b parameters a
plotted againset the angle ply~6a! in Fig. 4 according to Don-
nell’s theory. Here, again, the discontinuities occur at points wh
the CWN changes, both in the b parameter and in the slope o
buckling-load curve~at 6a562° the transition is most pro
nounced, from CWN51 to CWN57).

Unlike its isotropic counter part, for the laminated cylindric
shell the a parameter does not necessarily vanish: for CWN50
~axisymmetric buckling mode!, the sensitivity is characterized b
the asymmetric a parameter and while for CWNÞ0 it is charac-
terized by the b parameter.

Conclusions
From the results the following conclusions can be drawn:

• Discontinuities in the b parameter always occur at poi
where the critical circumferential wave number changes.

• Where the sensitivity a parameter is not zero, the sensitivi
parameter vanishes, and vice versa.

• The angle ply has, in some cases, the same effect as a str
configuration: as it increases does the buckling load, wh
the sensitivity decreases.
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A Combined Fourier Series–Galerkin
Method for the Analysis of
Functionally Graded Beams

H. Zhu
Graduate Student

B. V. Sankar
Professor,
Fellow ASME

Department of Mechanical and Aerospace Engineering
University of Florida, Gainesville, FL 32611-6250

The method of Fourier analysis is combined with the Galer
method for solving the two-dimensional elasticity equations fo
functionally graded beam subjected to transverse loads.
variation of the Young’s modulus through the thickness is given
a polynomial in the thickness coordinate and the Poisson’s rati
assumed to be constant. The Fourier series method is use
reduce the partial differential equations to a pair of ordinary d
ferential equations, which are solved using the Galerkin meth
Results for bending stresses and transverse shear stresses in
ous beams show excellent agreement with available exact s
tions. The method will be useful in analyzing functionally grad
structures with arbitrary variation of properties
@DOI: 10.1115/1.1751184#

Introduction
Functionally graded materials~FGMs! possess properties tha

vary gradually with location within the material. FGMs diffe
from composites wherein the volume fraction of the inclusion
uniform throughout the composite. The closest analogies of FG
are laminated composites, but the latter possess distinct interf
across which properties change abruptly. Suresh and Morte
@1# provide an excellent introduction to the fundamentals
FGMs. As the use of FGMs increases, for example, in aerosp
automotive, and biomedical applications, new methodologies h
to be developed to characterize FGMs, and also to design
analyze structural components made of these materials. Fo
ample, Pindera and Dunn@2# developed a higher order microme
chanical theory for FGMs~HOTFGM! that explicitly couples the
local and global effects. Delale and Erdogan@3# derived the crack-
tip stress fields for an inhomogeneous cracked body with cons
Poisson ratio and with a shear modulus variation given bym
5m0e(ax1by). In general the analytical methods should be su
that they can be incorporated into available methods with the l
amount of modifications, if any. One such problem is that of
sponse of FGMs to thermomechanical loads. Although FGMs
highly heterogeneous, it will be useful to idealize them as c
tinua with properties changing smoothly with respect to the spa
coordinates. This will enable obtaining closed-form solutions
some fundamental solid mechanics problems, and also will he
developing finite element models of the structures made of FG

In a series of papers Sankar and his co-workers,@4–7#, reported
analytical methods for the thermomechanical and contact ana
of FGM beams and also for sandwich beams with FG cores
these studies the thermomechanical properties of the FGM w

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2002, final revision, December 5, 2003. Associate Editor: R. R. C. Benson.
Copyright © 2Journal of Applied Mechanics
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assumed to vary through the thickness in an exponential fash
e.g., E(z)5E0elz. The material was assumed to be isotropic
every point and the Poisson’s ratio was assumed to be con
everywhere. This assumption enabled them to obtain analy
solutions using Fourier expansion methods. However, in prac
the properties of FGM will vary in an arbitrary fashion and th
aforementioned solution technique may not be useful. In
present paper we assume that the property variation through
thickness can be expressed in the form of a polynomial in thz
coordinate. We demonstrate the application of both Fourier se
and Galerkin methods for obtaining an approximate solution
displacements and stresses in a FG beam. The solutions are
pared with available exact solutions and the agreement is foun
be very good.

Analysis
Consider a functionally graded~FG! beam of heighth and

lengthL as shown in Fig. 1. The beam and the loading are sy
metric about the center linex5L/2. The beam is assumed to be
a state of plane strain normal to thex-z plane.

The transverse loadpz(x) acting on the beam can be repr
sented by a Fourier series as

szz~x,0!52pz~x!52pn sinjx (1a)

where j5np/L, n51,3,5 . . . and Fourier coefficientspn are
given by

pn5
2

L E0

L

pz~x!sinjxdx. (1b)

We will demonstrate the solution method for the loadpn sinjx in
this note. Then the traction boundary condition on the bott
surface of the beam is given by

szz~x,0!52pn sinjx, txz50. (1c)

Sincen is odd, the load is also symmetric about the centerli
The boundary conditions are similar to that of a simply suppor
beam, but the actual boundary conditions will become clear la

We assume that the FGM is isotropic at every point and
Poisson’s ratiov is a constant through the thickness. The variati
of Young’s modulusE in the thickness direction is given by
polynomial inz as

E~z!5E0S a11a2S z

hD1a3S z

hD 2

1a4S z

hD 3D (2)

whereE0 is the Young’s modulus atz50, anda1 , a2 , a3 , anda4
are material constants.

The differential equations of equilibrium are

]sxx

]x
1

]txz

]z
50

(3)
]txz

]x
1

]szz

]z
50.

Assuming that the principal material directions coincide with thx
andz-axes, the constitutive equations are

H sxx

szz

txz

J 5F c11 c13 0

c13 c33 0

0 0 c55

G H «xx

«zz

gxz

J (4)

or

s5C«.

The elasticity matrix@C# is related to material constants by
1,
004 by ASME MAY 2004, Vol. 71 Õ 421
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E11

2n13

E11
0

2n13

E11

1

E33
0

0 0
1

G13

D . (5)

We assume the solution for displacements as

u~x,z!5U~z!cosjx
(6)

w~x,z!5W~z!sinjx

Substituting Eq.~6! into ~4!, we obtain

S sxx

szz

txz

D 5S c11 c13 0

c13 c33 0

0 0 G
D S 2jU sinjx

W8 sinjx
~U81jW!cosjx

D . (7)

The prime~8! after a variable denotes differentiation with respe
to z. With Eqs.~6! and ~7!, one can state that the boundary co
ditions of the beam atx50 andx5L arew(0,z)5w(L,z)50 and
sxx(0,z)5sxx(L,z)50, which corresponds to simply suppo
conditions in the context of beam theory. Equations~7! can be
written as

S sxx

szz
D5S Sx

Sz
D sinjx

(8)
txz5Tz cosjx

where

S Sx

Sz
D5S c11 c13

c13 c33
D S 2jU

W8 D
(9)

Tz5G~U81jW!.

Substituting forsxx , szz, txz from Eqs.~7! into equilibrium Eqs.
~3!, we obtain a set of ordinary differential equations inU(z) and
W(z):

jSx1Tz850
(10)

Sz82Tzj50.

In order to solve Eqs.~10! we employ the Galerkin method. W
assume solutions of the form

U~z!5c1f1~z!1c2f2~z!1c3f3~z!1c4f4~z!
(11)

W~z!5b1f1~z!1b2f2~z!1b3f3~z!1b4f4~z!

wherefs are basis functions, andbs andcs are coefficients to be
determined. For simplicity we choose 1,z, z2, z3 as basis func-
tions. That is,

f1~z!51; f2~z!5z; f3~z!5z2; f4~z!5z3. (12)

Fig. 1 A FGM beam subjected to symmetric transverse load-
ing
422 Õ Vol. 71, MAY 2004
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Substituting the approximate solution in the governing differen
equations, we obtain the residuals. The residuals are minimize
equating their weighted averages to zero:

E
0

h

~jSx1Tz8!f i~z!dz50, i 51,4

(13)

E
0

h

~Sz82Tzj!f i~z!dz50, i 51,4.

Using integration by parts we can rewrite Eqs.~13! as

E
0

h

f ijSxdz1Tz~h!f i~h!2Tz~0!f i~0!2E
0

h

Tzf i8dz50

i 51,4
(14)

E
0

h

Szf i8dz1E
0

h

Tzjf idz2~Sz~h!f i~h!2Sz~0!f i~0!!50

i 51,4.

Substituting forSx(z), Sz(z), andTz(z) from Eqs.~9! into ~14!
and using the approximate solution forU(z) andW(z) in ~11! we
obtain

S Ki j
~1! Ki j

~2!

Ki j
~3! Ki j

~4!D S b
cD5S f i

~1!

f i
~2!D (15)

where

Ki j
~1!5jE

0

h

c13f if j8dz2jE
0

h

Gf i8f jdz

Ki j
~2!52E

0

h

Gf i8f j8dz2j2E
0

h

c11f if jdz

Ki j
~3!52j2E

0

h

Gf if jdz2E
0

h

c33f i8f j8dz

Ki j
~4!5jE

0

h

c13f i8f jdz2jE
0

h

Gf if j8dz (16)

f i
~1!5f i~0!Tz~0!2f i~h!Tz~h!

f i
~2!5f i~0!Sz~0!2f i~h!Sz~h!

S b
cD T

5~b1 b2 b3 b4 c1 c2 c3 c4!.

Traction boundary conditions on the top and bottom surfaces
beam are

txz~x,0!50

txz~x,h!50
(17)

szz~x,0!52pn sinjx

szz~x,h!50.

In terms ofSz andTz , the boundary conditions take the form

Tz~0!5Tz~h!50

Sz~0!52pn (18)

Sz~h!50.

Equations~18! can be used to evaluatef i
(1) and f i

(2) in ~16! which
are the right-hand side of Eq.~15!. Solving Eq.~15!, we obtain the
solutions for the coefficientsbi andci , which yield the approxi-
mate solutions forU(z) andW(z) in ~11!. OnceU(z) andW(z)
are determined, stress at any point can be computed using Eq~8!
and ~9!.
Transactions of the ASME
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Results and Discussion
In order to verify the present method examples from@1# are

used. In these examples the variation of Young’s modulus is
sumed to be of the formE5E0elz/h. The same variation can b
approximated by the polynomial form given in Eq.~2!. The coef-
ficients of the polynomial,a1 , . . .a4 were determined by using
the least squares curve fitting. Two types of beams were con
ered, and the variation of Young’s modulus in these beams
given by Eh /E0510 andEh /E050.1, respectively. In the firs
beam the load is applied on the softer face of the beam and in
second on the harder side. In both casesE0 was taken as 1 GPa
andn50.25. The thickness of the beam ish510 mm. The coef-
ficients of the cubic polynomial forE(z) are given in Table 1.

The results for the normalized bending stress for various va
of jh5np/L are presented in Figs. 2 and 3. It should be no

Fig. 2 Normalized axial stress sxx through the thickness of
FGM beam for EhÄ10 E0 . The exact solution and that of Galer-
kin method are indistinguishable.

Fig. 3 Normalized axial stress sxx through the thickness of
FGM beam for EhÄ0.1 E0 . The exact solution and that of Galer-
kin method are indistinguishable.

Table 1 The coefficients of the cubic polynomial for E„z…. E0
Ä10 GPa and beam thickness hÄ10 mm.

Eh /E0 a1 a2 a3 a4

10 1 2.9577 20.7889 6.7982
0.1 1 22.1845 1.9844 20.6996
Journal of Applied Mechanics
as-

sid-
are

the
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that smaller values ofjh represent slender beams or beams s
jected to more uniformly distributed loads, whereas larger val
of jh indicate short stubby beams or beams subjected to con
trated loads. From Figs. 2 and 3 it can be noted that the resul
the Galerkin method agree very well with the exact solution,@1#.
The difference of two solutions is imperceptible. The normaliz
stresses are less than 1 when the loads are applied to the s
face ~Fig. 2, Eh /E0510). On the other hand, the normalize
stresses are much greater than 1 when the loads are applied
harder face~Fig. 3, Eh /E050.1). One can also note the approx
mate location of the neutral axis for the two beams in these
ures.

The transverse shear stresses are plotted in Figs. 4 and 5
approximate solution also agrees well with exact solitions. T
shear stresses attain the maximum value at the neutral axis.
normalized maximum shear stress values are above the con
tional 1.5, when the loads are applied on the harder surface o
beam~Fig. 5!, but fall below 1.5, in some cases when the loa
are applied to the soft side~Fig. 4!.

The present method can be applied to functionally graded st
tures with arbitrary variation of properties and also can be
tended to platelike structures and sandwich construction whe
the core material and/or the face sheets are functionally grad

Fig. 4 Transverse shear stress through the thickness of FGM
beam for EhÄ10 E0 . The exact solution and that of Galerkin
method are indistinguishable.

Fig. 5 Transverse shear stress through the thickness of FGM
beam for EhÄ0.1 E0 . The exact solution and that of Galerkin
method are indistinguishable.
MAY 2004, Vol. 71 Õ 423
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Fracture of Brittle Microbeams

M. Ostoja-Starzewski
Department of Mechanical Engineering, McGill
University, 817 Sherbrooke Street West Montreal,
PQ H3A 2K6, Canada
e-mail: martin.ostoja@mcgill.ca
Fellow ASME

The random polycrystalline microstructure of microbeams nec
sitates a reexamination of the crack driving force G stemm
from the Griffith fracture criterion. It is found that, in the case
dead-load conditions, G computed by straightforward averag
of the spatially random elastic modulus E is lower than that o
tained by correct ensemble averaging of the stored elastic ene
This result holds for both Euler-Bernoulli and Timoshenko mod
of micro-beams. However, under fixed-grip conditions G is to
computed by a direct ensemble averaging of E. It turns out t
these two cases provide bounds on G under mixed loading.
thermore, crack stability is shown to involve a stochastic com
tition between potential and surface energies, whose weak
domness leads to a relatively stronger randomness of the crit
crack length. @DOI: 10.1115/1.1651091#

Background
According to Griffith’s theory,@1#, of elastic-brittle solids, the

strain energy release rateG is given by

G5
]W

]A
2

]U

]A
52g (1)

where A is the crack surface area formed,W is the work per-
formed by the applied loads,U is the elastic strain energy, andg
is the energy required to form a unit of new material surface~e.g.,
@2#!. The material parameterg is conventionally taken as constan
but, given the presence of a randomly microheterogeneous m
rial structure, its random field nature is sometimes considered
plicitly ~e.g., @3,4#!. If one recognizes, however, that the rando
material structure also affects the elastic moduli, the computa

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 1
2002; final revision, Aug. 1, 2003. Associate Editor: M.-J. Pindera.
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of the left-hand side of~1! needs to be reexamined as well. Fu
thermore, randomness of both potential and surface energies
result in a stochastic, rather than deterministic, crack stability
terion. These issues are studied here in the case of crackin
volving a beam-type configuration.

Dead-Load Conditions
This case of constant load implies that the force is nonrand

but the kinematic variable is random. Now, only the second te
in ~1! remains, and, assuming an Euler-Bernoulli beam, the st
energy is

U~a!5E
0

a M2

2IE
dx, (2)

wherea is crack length,M is bending moment,I is beam’s mo-
ment of inertia, andE is elastic modulus. Henceforth, we simp
work with a5A/B, where B is the constant beam~and crack!
width. In view of Clapeyron’s theorem, the strain energy relea
rate may be written as

G5
]U

B]a
. (3)

Now, if the beam’s material is random,E is a random field
parametrized byx, which we can write as a sum of a consta
mean^E& and a zero-mean fluctuationE8(x)

E~v,x!5^E&1E8~v,x! vPV, (4)

whereV is a sample space. TakeE8(x,v) as a wide-sense sta
tionary random field. A random material is thus defined as
ensembleB5$B(v);vPV%5$E(v,x);vPV,xP@0,a#%. Here,
and in the following, we explicitly show the dependence onv,
whenever we wish to indicate the random nature of a given qu
tity prior to ensemble averaging.

On the physical side, the need to consider randomness oE
arises when the representative volume element~RVE! of con-
tinuum mechanics cannot be safely applied to the actual be
Among others, problems of this type are driven by the challen
of micro and nanotechnology; see, e.g.,~@5,6#!. Such a case is
shown in Fig. 1, where a so-calledmicrobeamis so thin that its
lateral dimensionL—i.e., the very one defining its Young’s
modulus—begins to be comparable to the crystal sized. The
‘‘comparable’’ aspect is described by a mesoscaleL/d, and the
RVE is to be replaced by a statistical volume element~SVE!. The
finite-size scaling laws of the SVE—i.e., its approach to the R
with L/d→`—were recently reviewed in@7#.

It follows from ~1! that U is a random integral, such that, fo
each and every realizationvPV, we should consider

6,

Fig. 1 Fracture of a microbeam of thickness L off a substrate.
A statistical volume element „SVE… imposed by the random mi-
croheterogeneous structure characterized by scale d is shown.
04 by ASME Transactions of the ASME
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U~a,E~v!!5E
0

a M2dx

2IE~v,x!
. (5)

Upon ensemble averaging, this leads to an average energy

^U~a,E!&5K E
0

a M2dx

2I @^E&1E8~v,x!#L . (6)

In the conventional formulation of deterministic fracture m
chanics, random microscale heterogeneitiesE8(x,v) are disre-
garded, and~5! is evaluated by simply replacing the denomina
by ^E&, so that

U~a,^E&!5E
0

a M2dx

2I ^E&
. (7)

Clearly, this amounts to postulating that the response of an id
ized homogeneous material is equal to that of a random one
average. Therefore, we are interested in making a statement a
^U(a,E)& versusU(a,^E&), and about̂ G(E)& versusG(^E&).

First, note that, since the random processE is positive-valued
almost surely~i.e., with probability one!, Jensen’s inequality,@8#,
yields an inequality between harmonic and arithmetic average
the random variableE(v)

1

^E&
<K 1

EL , (8)

whereby thex-dependence is immaterial in view of the assum
wide-sense stationarity of fieldE. With ~6! and ~7!, this implies
that

U~a,^E&!5E
0

a M2dx

2I ^E&
<E

0

a M2

2I K 1

EL dx

5K E
0

a M2dx

2IE~v,x!L 5^U~a,E!&, (9)

since the conditions required by Fubini’s theorem,@8# are met.
Now, if we define the strain energy release rateG(a,^E&) in a

hypothetical material specified bŷE&, and the strain energy re
lease ratê G(a,E)& properly ensemble averaged in the rando
material$E(v,x);vPV,xP@0,a#%

G~a,^E&!5
]U~a,^E&!

B]a
^G~a,E!&5

]^U~a,E!&
B]a

, (10)

and note that the side condition is the same in both cases

U~a,^E&!ua5050 ^U~a,E!&ua5050, (11)

we obtain
G~a,^E&!<^G~a,E!&. (12)

This provides a formula for the ensemble averageG under dead-
load conditions using deterministic fracture mechanics for Eu
Bernoulli beams made of random materials.

Another derivation of this is obtained by first introducing
complementary energy through an application of arandom Leg-
endre transformation, @9#,

U* ~a,E~v!!5M•u2U~a,E~v!! vPV, (13)

whereu is the angle of twist conjugate toM, such that

U* ~a,E~v!!5E
0

a IE~v!

2
u2dx. (14)

It then follows from~8! that

U* ~a,^E~v!&!5E
0

a I ^E~v!&
2

u2dx>E
0

a I ^E21~v!&21

2
u2dx

5U* ~a,^E21~v!&21!, (15)

which, with the side condition
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a

U* ~a,^E&!ua5050 U* ~a,^E21&21!ua5050, (16)

and the definitions

G* ~a,^E&!5
]U~a,^E&!

B]a
G* ~a,^E21&21!5

]U~a,^E21&21

B]a
,

(17)

yields
G* ~a,^E&!>G* ~a,^E21&21!. (18)

SinceG(a,^E&)5G* (a,^E&) in a linear elastic material, we ob
tain ~12!.

Inequality ~12! shows thatG computed under the assumptio
that the random material is directly replaced by a homogene
material (E(x,v)5^E&), is lower thanG computed withE taken
explicitly as a spatially varying material property. Clearl
^G(a,E)& is the correct quantity to be used under dead loadin

Remark 1. With the beam thicknessL increasing, the mesos
cale L/d grows, so thatE8→0. Thus,^E21&21→^E&, and ~12!
turns into an equality, whereby the deterministic fracture mech
ics is recovered.

Remark 2. These results carry over to a Timoshenko bea
In that case, strain energy is defined by

U~a!5E
0

a M2

2IE
dx1E

0

a V2

2Am
dx, (19)

whereV is shear force,A is beam’s moment of inertia, andm is
shear modulus. The random material is now defined as a ve
random fieldB5$C(v,x);vPV,xP@0,a#%, where the stiffness
C5@E,m#. With the strain energy release rate defined by~3!, we
now derive

G~a,^E&,^m&!<^G~a,E,m!&5G* ~a,^E21&21,^m21&21!.
(20)

The equality in ~20! follows from the random Legendre
transformation.

Fixed-Grip Conditions
In this case the displacement is constant~i.e., nonrandom!, and

the load is random. Now, only the first term in~1! remains so that

G52
]Ue~a!

B]a
. (21)

Suppose now that there is loading by a forceP at the tip, so that
we have

G52
u

2B

]P

]a
. (22)

Take now a cantilever beam problem implyingP53uEI/a3.
Then, we find

^G&52
u

2B K ]P

]a L 52
u

2B

]^P&
]a

5
9u2I ^E&

2Ba4
. (23)

Since the load—be it a force and/or a moment—is always prop
tional to E, this indicates thatG can be computed by a direc
ensemble averaging ofE under fixed-grip loading, and, indeed
the same conclusion carries over to Timoshenko beams.

Mixed-Loading Conditions
In general, both load and displacement vary during cra

growth, and there is no explicit relation between the crack driv
force and the change in elastic strain energy. However, we
bound G under mixed loading (Gmixed) by G under dead load
(GP) andG under fixed grip (Gu), providing we note the follow-
ing facts:
MAY 2004, Vol. 71 Õ 425
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~i! Observe that GP5^G(a,E)&, while Gu5G(a,^E&).
Clearly, in view of~18!, the ensemble averages satisfy

Gu<GP . (24)

~ii ! Any (dP,du) change in theP, u-plane, corresponding to
Gmixed due to an extension of the crack byda, may be split into
two parts: (0,du) and (dP,0). The first part, involving an exten
sion of the crack by (da)1 , is computed asGP5^G(a
1(da)1 ,E)&. The second part, involving an extension of t
crack by (da)2 , is computed asGu5G(a1(da)2 ,^E&).

~iii ! Observe that

Gmixed~a1da!5Gu~a1~da!2!1GP~a1~da!1!<GP~a1da!
(25)

becauseGu(a1(da)2)<GP(a1(da)2) by ~24!, while

Gmixed~a1da!5Gu~a1~da!1!1GP~a1~da!2!>Gu~a1da!
(26)

becauseGP(a1(da)1)>Gu(a1(da)1) again by~24!.
It follows that Gmixed due toda5(da)11(da)2 is bounded by

theG’s computed under dead-load and fixed-grip conditions, fr
above and below, respectively:

Gu<Gmixed<GP . (27)

Note that, interestingly, in mechanics of random media,
energy-type inequalites are usually ordered in an inverse fash
kinematic ~resp. force! conditions provide upper~resp. lower!
bounds.

Moving on to the case of Timoshenko beam loaded at the
we have four particular possibilities:

~i! P andM fixed: GP2M ,
~ii ! P andu fixed: GP2u ,
~iii ! u andM fixed: Gu2M ,
~iv! u andu fixed: Gu2u ,
wherein GP2u and Gu2M are G’s under mixed conditions.

Now, in place of~24! we have

Gu2u<GP2u<GP2M Gu2u<Gu2M<GP2M . (28)

Stochastic Crack Stability
Recalling the fracture criterion~1!, we observe that cracking

along thex axis is governed by an interplay of two random fiel
~parametrized byx!: the elastic propertyE and the surface energ
densityg. In view of the scaling arguments concerning the SV
versus the RVE in the paragraph following Eq.~4!, the first one is
a function of the beam thicknessL, but the second one is no
Thus, for statistically stationary and ergodic materials, the r
domness ofE decreases to zero as the mesoscaleL/d→`, but the
randomness ofg remains constant. To sum up, cracking of micr
beams is more sensitive to the material randomness of el
moduli than cracking of, say, large plates.

Crack stability in any particular micro-beam~vPV!, in a gen-
eral loading situation, is governed by the condition of the sa
form as that in deterministic fracture mechanics,@2#,

]2~P~v!1G~v!!

]a2 H ,0: unstable equilibrium

50: neutral equilibrium

.0: stable equilibrium.

(29)

Here both, the total potential energyP~v! and the surface energ
G~v! are random. Now, under dead-load conditions, the corre
averaged̂P& ~shown by a solid line! is bounded from above by
the deterministicP estimated by a straightforward averaging ofE

P~^1/E&!5^P&<P~^E&!. (30)

The above follows again from~8!. Typically, the energyP goes
like 2a3. Thus, in Fig. 2, we use a wedge of two parabolas
indicate scatter associated with the mean

P~^1/E&!5^P&. (31)
426 Õ Vol. 71, MAY 2004
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Next, if we take, in analogy to~4!, the surface energy density a
a random field made up of a constant mean^g& and a zero-mean
fluctuationg8(x)

g~v,x!5^g&1g8~v,x! vPV, (32)

then the surface energyG(v)52a@^g&1g8(v)#. Thus, using two
straight lines, we indicate scatter about^G&52a^g&. Conse-
quently, the scatter about the mean ofP~v!1G~v! is larger than
that of P~v! or G~v! alone, and at the maximum of their sum w
have a stochastic competition between both contributions. E
dently, according to~29!, the critical crack lengthac becomes a
random variable—i.e.,ac(E(v))—and we show its range by a
dashed region in Fig. 2. In view of~30!, there is an inequality
between the averageac properly calculated fromP(^1/E&)

]2@P~^1/E&!1^G&#

]a2
50⇒ac~^1/E&!5^ac~E!& (33)

and the deterministicac simplistically calculated fromP(^E&) is

]2@P~^E&!1^G&#

]a2
50⇒ac~^E&!. (34)

The said inequality is

ac~^1/E&!<ac~^E&!. (35)

Note that the equalityac(^1/E&)5^ac(E)& in ~33! follows from
~31!. Finally, Fig. 2 shows that small random fluctuations inE and
g ~i.e., scatter about the maximum ofP(^1/E&)1^G&) lead to
relatively much stronger~!! fluctuations inac .
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Fig. 2 Potential energy P„Š1ÕE‹… „thick line … and its scatter
shown by a parabolic wedge „thin lines …, summed with the sur-
face energy ŠG‹Ä2aŠg‹ „thick line … and its scatter shown by a
straight wedge „thin lines …, results in P„Š1ÕE‹…¿ŠG‹ „thick line …

and having scatter shown by a wider parabolic wedge „thin
lines …. Dashed region indicates the range of a critical crack
length ac„E„v……, a random variable.
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Elastic-Plastic Stress Distribution in a
Plastically Anisotropic Rotating
Disk
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The plane state of stress in an elastic-plastic rotating anisotro
annular disk is studied. To incorporate the effect of anisotropy
the plastic flow, Hill’s quadratic orthotropic yield criterion and it
associated flow rule are adopted. A semi-analytical solution
obtained. The solution is illustrated by numerical calculatio
showing various aspects of the influence of plastic anisotropy
the stress distribution in the rotating disk.
@DOI: 10.1115/1.1751183#

1 Introduction
The dependence of stress distribution on the angular velocit

rotating disks is of significant importance due to a large numbe
applications. The majority of the work in this area is based on
assumption that the material is isotropic and obeys Tresca y
criterion with its associated flow rule~see@1# and a review in this
paper!. A comparison of the solutions for elastic-plastic rotati
solid and annular disks based on Tresca and Mises yield cri
was given in@2#. In particular, the difference in stress distributio
calculated with those two criteria was discussed. The effec
yield criteria on the stress distribution and limit angular veloc
of a rotating disk with variable thickness was also investigated
@3#. In @4,5#, the influence of temperature fields on the develo
ment of plastic zones in nonrotating thin disks was demonstra
In particular, it appeared that the rise in temperature at which
entire plate became plastic was very small for various plate

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
3, 2003, final revision, October 17, 2003. Associate Editor: M.-J. Pindera.
Copyright © 2Journal of Applied Mechanics
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ometries. Summarizing the results obtained in@2–5# one may ex-
pect that deviations from isotropic material response can hav
significant effect on the development of plastic zones in thin
tating disks. Elastic solutions for solid and annular rotating ani
tropic disks were found in@6,7#. Plastic solutions for such disk
are not available, to the best of our knowledge. Among the vari
theories of anisotropic plasticity, the one based on Hill’s yie
criterion and its associated flow rule,@8#, is simplest and most
popular. This yield criterion is adopted in the present paper.
axisymmetric problem is formulated assuming that the princi
axes of anisotropy coincide with the radial and circumferen
directions in plane of a thin disk rotating about its axis. The ed
of the disk are stress free, and stresses are continuous acros
elastic-plastic boundary. A semi-analytical solution is found un
plane stress conditions.

2 Solution
Consider a circular disk of outer radiusb and inner radiusa

rotating with an angular velocityv about its axis. The thickness o
the disk is assumed to be small such that the plane state of s
can be adopted. In a cylindrical coordinate systemruz with its
z-axis coinciding with the axis of rotation, there are only tw
nonzero components of the stress tensor,s r andsu . The elastic
properties of the material are assumed to be isotropic, and
elastic portion of the strain tensor obeys Hooke’s law. In the
lindrical coordinates chosen, Hill’s yield criterion has the form

~G1H !s r
222Hs rsu1~H1F !su

251 (1)

whereG, H, F are constants which characterize the current s
of material anisotropy. It is convenient to rewrite~1! as

s r
21pu

22hs rpu5s0
2 (2)

where
h52H/A~G1H !~H1F !, h15AG1H/AH1F,

s051/~G1H !, pu5su /h1 . (3)

The only nontrivial equation of motion is

]s r

]r
1

s r2su

r
52rv2r , (4)

wherer the density of the material. The boundary conditions a

s r50 at r 5a and r 5b. (5)

At small v the entire disk is elastic. Since the elastic propert
are assumed to be isotropic, the general solution for stress
well known ~see, for example,@9#!. Using ~5! the distribution of
stresses can be found in the following form:

s r5
31n

8
rv2S a21b22

a2b2

r 2
2r 2D ,

(6)

su5
31n

8
rv2S a21b21

a2b2

r 2
2

113n

31n
r 2D

where n is Poisson’s ratio. Assume that yielding begins at t
inner radius of the disk~it will be verified a posteriori!. Then,
using~3! and taking into account thatsu.0, the angular velocity
at the initial yielding,ve , is obtained by substitution of~6! into
~2!

rve
2b2

s0
5

4h1

~31n!1~12n!~a2/b2!
. (7)

If v is higher thanve , a plastic zone appears in the disk. Th
angular velocity at which the entire disk becomes plastic will
denoted byvp . In the rangeve,v,vp the disk consists of an
inner plastic zone surrounded by an outer elastic zone. To find
distribution of stresses in the plastic zone, it is convenient to
troduce the following nondimensional quantities:

ry
004 by ASME MAY 2004, Vol. 71 Õ 427
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V5rv2b2/s0 , q5a/b, b5r /b, g5c/b (8)

wherec is the radius of the elastic-plastic boundary. Equation~2!
is satisfied automatically by the substitution

s r /s052 cosw/A42h2, pu /s05h cosw/A42h21sinw
(9)

wherew is a function ofb. Substituting~9! into ~4!, with the use
of ~3!, leads to the following ordinary differential equation forw:

2 sinw

A42h2

dw

db
2S 2F cosw

~H1F !A42h2
2h1 sinw D 1

b
2Vb50.

(10)

The boundary condition to this equation follows from~5! at r
5a and ~9! in the form

w5p/2 (11)

at b5q. The solution to~10! satisfying the boundary condition
~11! can be obtained numerically and givesw as a function ofb.
This function is not monotonic,w attains its maximum at som
value ofb and, then, decreases. If the entire disk is plastic, t
w5p/2 at b51, as follows from~5! at r 5b and ~9!. For a given
value of q, it is clear from ~10! that w depends onb and V,
w5w~b,V!. Therefore, the solution to the equationw(1,Vp)
5p/2, if it exists, gives the value ofVp corresponding tovp .
The variation of the nondimensional quantity (vp2ve)/ve with q
is shown in Fig. 1.

Once the solution to~10! has been found, the distribution o
stresses in the plastic zoneq<b<g is given by~9! with the use
of ~3!. The general stress solution given in@9# is valid in the
elastic regiong<b<1. Using the boundary condition~5! at r
5b and notation~8! it may be rewritten as

s r

s0
5

B

s0
S 1

b2
21D 1

31n

8
V~12b2!,

(12)

su

s0
52

B

s0
S 1

b2
11D 1

113n

8
VS 31n

113n
2b2D

whereB is an arbitrary constant. For a given angular velocity
the rangeve,v,vp the magnitudes ofg and B can be deter-
mined from the condition of continuity of the stresses across
elastic-plastic boundary. Atb5g, it follows from ~3!, ~9!, and
~12!,

B

s0
5

1

~1/g221!
F 2

A42h2
coswg2

31n

8
V~12g2!G (13)

Fig. 1 Variation of the nondimensional quantity „vpÀve…Õve
with q
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1

4
@31n1g2~12n!#V5

coswg

A42h2 S hh112
11g2

12g2D 1h1 sinwg

(14)

wherewg is the value ofw at b5g and is a function ofg since the
solution to~10! givesw as a function ofb. Equation~14! should
be solved numerically to obtaing as a function ofV. Then,B can
be found as a function ofV with the use of~13!.

3 Numerical Results and Discussion
To illustrate the effect of plastic anisotropy on the developm

of the plastic zone some numerical results are presented in
section. In all cases,n51/3. The solution for the isotropic materia
is obtained as a particular case of the general solution foun
F5G5H. In Figs. 1–4, the corresponding calculations are illu
trated by dashed lines. Four sets of anisotropic coefficients
considered~@10,11#!:

F/~G1H !50.243, H/~G1H !50.703 for steel DC06;

F/~G1H !50.587,

H/~G1H !50.410 for aluminum alloy AA6016;

F/~G1H !50.498,

H/~G1H !50.419 for aluminum alloy AA5182;

F/~G1H !50.239,

H/~G1H !50.301 for aluminum alloy AA3104.
Note that the coefficients were measured for rolled sheets w
straight principal axes of anisotropy. It is clear that the disk un
consideration cannot be made of such sheets. However, for i

Fig. 2 Variation of the nondimensional radius of elastic-plastic
boundary, g, with V at qÄ0.4

Fig. 3 Radial stress distribution at VÄ1.85 and qÄ0.4
Transactions of the ASME
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2,
trative purposes it is possible to use the aforementioned co
cients for characterizing the level of anisotropy at each po
Figure 2 shows the variation of the radius of elastic-plastic bou
ary, g, with V at q50.4. Figures 3 and 4 illustrate typical radi
and circumferential stress distributions atV51.85 andq50.4,
respectively.

There are two main conclusions to be made. First, the qua
tive behavior of all curves is the same for anisotropic and iso
pic materials: the increase in the angular velocity fromve to vp is
relatively small~Fig. 1!, and it tends to be smaller for the alum
num alloys of lower series. This is also illustrated in Fig. 2. S
ond, the anisotropic plastic properties have a significant effec
the size of the plastic zone and the stress distributions~Figs. 3 and
4!. It is expected that this effect may have an influence on resid
stress distributions, fatigue crack growth and other properties

Acknowledgments
N.A. gratefully acknowledges support from the Foundation

Science and Technology~Portugal! under grant SFRH/BPD/6549
2001.

Nomenclature

a, b 5 inner and outer radii of the disk, respectively
c 5 elastic-plastic boundary

p0 5 modified tangential stress
q 5 ratio of the inner to outer radius of the disk

ruz 5 cylindrical coordinate system
b 5 nondimensional polar radius
g 5 nondimensional radius of the elastic-plastic bound

h, h1 5 plastic anisotropic parameters
n 5 Poisson’s ratio
r 5 density of the material

s r , su 5 components of the stress tensor in the cylindrical
coordinate system

w 5 function of r
wg 5 value ofw at b5g
V 5 nondimensional parameter
v 5 angular velocity

ve 5 angular velocity at the initial yielding
vp 5 angular velocity at which the entire disk becomes

plastic
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Saint-Venant Decay Rates for the
Rectangular Cross Section Rod

N. G. Stephen
School of Engineering Sciences, Mechanical Engineerin
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P. J. Wang
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A finite element-transfer matrix procedure developed for deter
nation of Saint-Venant decay rates of self-equilibrated loading
one end of a semi-infinite prismatic elastic rod of general cro
section, which are the eigenvalues of a single repeating cell tra
fer matrix, is applied to the case of a rectangular cross secti
First, a characteristic length of the rod is modelled within a fini
element code; a superelement stiffness matrix relating force
displacement components at the master nodes at the ends o
length is then constructed, and its manipulation provides
transfer matrix, from which the eigenvalues and eigenvectors
determined. Over the range from plane stress to plane str
which are the extremes of aspect ratio, there are always eig
modes which decay slower than the generalized Papkovitch-F
modes, the latter being largely insensitive to aspect ratio. F
compact cross sections, close to square, the slowest decay is
mode having a distribution of axial displacement reminiscent
that associated with warping during torsion; for less compa
cross sections, slowest decay is for a mode characterized by c
sectional bending, caused by self-equilibrated twisting mom
@DOI: 10.1115/1.1687794#

1 Introduction
For a one-dimensional, beam-like structure, Saint-Vena

principle~SVP! allows one to replace a known load system on o
end by a statically equivalent load distributed in a particular w
demanded by the elastostatic solution, known as the relaxed
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 2
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condition. Statically equivalent implies that the resultant force a
moment are unchanged; the difference between the two load
tributions is termed self-equilibrating and since it has no resul
force or couple that requires reaction at some other locations
the structure, there is no reason why the associated stress
strain field should penetrate any great distance into the struc
That is the self-equilibrating load should produce only a lo
effect, which decays as one moves away from the beam end
the other hand, more often than not, the exact distribution is
known, only the magnitude of the end load; either way, SVP
rarely invoked consciously, yet it underpins the day-to-day ap
cation of the discipline of strength of materials.

Exact elasticity solutions for these end effects are availa
when the rod has a mathematically amenable boundary, suc
the solid and hollow circular cross section,@1,2#; however, for the
important case of a rod of rectangular cross section, the w
known Papkovitch-Fadle~P-F! modes~see, for example,@3#!, ap-
ply only to the extremes of aspect ratio which are plane strain
plane stress, and are subject to their inherent stress and disp
ment assumptions, while an antiplane solution,@4#, assumes infi-
nite width.

Toupin @5# provided the first proof of SVP in 1965, and the
has been extensive research since that time, with reviews ha
been provided by Horgan and Knowles,@6–8#. Toupin argued that
attempts to calculate decay rates are not ‘‘consistent with the spirit
of the principle, and the way it is used. After all, if one ca
construct, or is willing to construct solutions, there is no need
the principle.’’ A counter view is that a knowledge of the mini
mum decay rate for a particular structure defines the extent o
region where a calculated stress may be in error. In a recent p
@9#, the present authors described a numerical procedure w
allowed the determination of the Saint-Venant decay rates fo
semi-infinite elastic rod of arbitrary cross section subjected
self-equilibrated loading at one end. This procedure is, in turn
development of a transfer matrix method,@10#, in which the decay
rates and equivalent continuum beam properties of a repet
pin-jointed framework, consisting of a series of identical cells, c
be calculated. Nodal displacements and forces on either sid
the generic cell form state vectors which are related by mean
a transfer matrix, the latter being determined from a knowledg
the cell stiffness matrix; on account of translational symme
consecutive state vectors are related by a constant multiplel, the
decay factor, which leads directly to a standard eigenvalue p
lem. For the continuum elastic beam of arbitrary cross section,
beam is first regarded as a series of identical cells of a chara
istic length, related to some cross-sectional dimension; the s
ness matrix of one such cell is constructed using a finite elem
code, such as ANSYS. Since displacement and force compon
are required only for master nodes at the ends of the cell,
others are treated as slave nodes. This condensation creates
perelement stiffness matrix, which is imported into a MATLA
430 Õ Vol. 71, MAY 2004
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environment where the manipulations to form the transfer ma
and determination of the eigenvalues are readily accomplish
Accuracy of the method was established in@9# by comparison
with the decay rate predictions from a selection of the stock
exact elasticity solutions, and found to be excellent. The the
behind the method was described fully in@9#, and is not repeated
here.

2 Finite Element Modelling of the Cell
Figure 1 shows a typical repeating cell of the rod having wid

2a, depth 2b and lengthl c . For numerical purposes we takeb
and l c as equal to unity, when the calculated decay rates, over
range of aspect ratiosa/b51/20→40, are a multiple of the rod
semi-depthb. The modelling data are given in Table 1; in all cas
20-node isoperimetric elements were used and Poisson’s ratio
taken to be 0.25. The large dimension of the transfer matrix,
example 5763576 in the case of the square cross section, in t
leads to a large number of possible decay modes; 12 of the ei
values are equal to unity and these pertain to the six rigid b
displacements, and the six transmission modes of tension, tor
and shear and bending in two planes. The remaining eigenva
occur as reciprocal pairs~the transfer matrix being symplectic!
according to whether decay is from left to right, or vice vers
which leads to the prediction of 282 distinct left to right dec
modes. Of these, the most important~and the most accurate! are
those which provide the slowest~spatially! rates of decay; thus for
the square cross section, only the first ten decay rates are
sented, allowing some classification into families of decay mod

Fig. 1 Semi-infinite elastic rod of rectangular cross section
subject to self-equilibrated load on the end zÄ0, and repeating
cell of length l c
Table 1 Finite element modeling data of rectangular crosssection of characteristic length, l c

Aspect ratio
a/b

Division of
2a32b

Division of
length,I c

Number of
elements

Nodes in
cross-section

Size of transer
matrix

1/20 438 10 320 121 7263726
1/10 438 10 320 121 7263726
1/4 338 5 120 95 5703570
1/2 338 5 120 95 5703570
2/3 436 5 120 93 5583558
4/5 436 5 120 93 5583558
1 535 5 125 96 5763576
5/4 634 5 120 93 5583558
3/2 634 5 120 93 5583558
2 833 5 120 95 5703570
4 833 5 120 95 5703570
10 834 5 160 121 7263726
20 834 5 160 121 7263726
40 834 5 160 121 7263726
Transactions of the ASME
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3 Results and Discussion
The slowest decay rate predictions are shown in Table 2

ascending magnitude of the real part which governs the rat
decay; thus the first row pertains to self-equilibrated loading t
will penetrate the greatest distance into the structure. Exact d
rates are available only at the extremes of aspect ratio, for ge
alized plane stress (a/b→0) and plane strain (a/b→`) when
stress decays exponentially from one end as exp(2kz), wherek
are the roots of the well-known Papkovitch-Fadle~P-F!
eigenequation~see@3#, article 26!

sin 2kb62kb50; (1)

the two smallest roots arekb52.106261.1254i , kb55.3563
61.5516i for the positive sign in Eq.~1!, which is the symmetric
case, andkb53.748861.3843i , kb56.950061.6761i for the
negative sign, the asymmetric case. In the case of antiplane s
@4#, decay from the loaded edge is as exp(2npz/2b), wheren is
an integer, implying a slowest decay given by the rootkb5p/2;
these exact decay rates are shown in the first column The sh
entries in Table 2 are those that, by virtue of similarity of t
displacement field, are closest to these known exact solutions
are here regarded as generalized P-F or generalized shear m

First, it is noted that the decay rates of the generalized
modes appear largely insensitive to aspect ratio; thus for the c
a/b<2/3, the real part of the slowest generalized symmetric
mode exceeds that of the exact plane stress value~2.1062! by less
than 0.1%, and fora/b54/5 it is less than the plane stress val
by 0.5%. The maximum deviation occurs for the square cr
section,a/b51, at less than17%. For the slowest asymmetri
generalized P-F mode, the real part exceeds the plane stress
~3.7488! by less than 3% fora/b<1.

For all aspect ratios considered, there is at least one mode
decays slower than the generalized P-F modes. Fora/b<1, the
mode associated with the real root is characterized by a ben
of the cross section due to self-equilibrated twisting momen
the xy-plane, as depicted in Fig. 2. The mode associated with
complex root is characterized by an axial warping displacem
field reminiscent of Saint-Venant torsion, and hence a stress
associated with the restraint of torsional warping~here referred to
as the bi-moment mode!.

For the casesa/b.5/4, Table 2, there are an increasing numb
of modes which decay slower than the slowest P-F modes; a
the smallest of these modes is characterized by cross-sect
bending, but in fact they are physically the same modes of de

Fig. 2 Self-equilibrated twisting moment on the end zÄ0;
aspect ratio aÕbË1
432 Õ Vol. 71, MAY 2004
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as those which provide the smallest decay rates fora/b,4/5; thus
consider the dual relationship between the decay rates for the
casesa/b52/3 anda/b53/2; physically the bars are identica
the difference being an interchange of the coordinate axes and
implication, the dimensionsa and b. The slowest decay rate fo
a/b52/3 is kb52.0420, when stress decays
exp(22.0420z/b)5exp(21.3613z/a), which is the smallest de-
cay rate fora/b53/2, albeit witha andb reversed; generalization
of this result is straightforward for other aspect ratios. For a
particular aspect ratioa/b,1, a dual decay rate may be found b
simply multiplying by the aspect ratio: thus an entry fora/b54
can be found from the decay rate fora/b51/4, and multiplying by
1/4; for example, 1.499631/450.3749. Indeed, in Table 2, with
the exception of those entries below the symbol↓, which denotes
that some decay rates have not been entered, every decay
for a/b,1 has a dual fora/b.1 on the same row.

Compared to the general rectangle, which is symmetric ab
the coordinate axes, the square cross section is, in addition, s
metric about the two diagonals; in turn the decay rates can o
as single eigenvalues, or as pairs, according to the~a!symmetry of
the displacement field. For the slowest bi-moment mode (kb
51.663960.5717i ) both the axial displacement,w, and the cross-
sectional displacements,u and v, are symmetric with respect to
the diagonals, and asymmetric with respect to thex andy-axes; in
consequence a single root, and a single eigenvector~decay mode!,
suffices. On the other hand, repeated decay rates occur for
metric cross-sectional bending (2.547460.9238i ) and the asym-
metric P-F mode (3.797061.3876i ), but not for the asymmetric
cross-sectional bending, or symmetric P-F modes. The sin
roots ata/b51 show~a!symmetries, as follows:

(1.663960.5717i ) u, v andw are symmetric about both
diagonals, asymmetric about both
coordinate axes

(3.880461.3623i ) u, v andw are asymmetric about both
diagonals and coordinate axes

4.0408 u, v andw are asymmetric about both
diagonals and coordinate axes

(2.239161.1072i ) u, v andw are symmetric about both
diagonals and coordinate axes

(1.991761.1546i ) u, v andw are symmetric about
both coordinate axes, asymmetric
about the diagonals

In each case, there are~a!symmetries for each of the three
displacement components.

In contrast the modes pertaining to the double roots show a
developed pattern of~a!symmetry; for example,

(2.547460.9238i ) one mode hasu andv symmetric about
the y-axis, asymmetric about
the x-axis, no~a!symmetries about diagona
w no ~a!symmetries; the
other mode hasw symmetric about the
x-axis, asymmetric about they-
axis, no~a!symmetries about diagonals;
u andv show no
~a!symmetries

3.797061.3876i one mode hasw symmetric about
one diagonal, asymmetric about the
other;u andv show no~a!symmetries;
the other mode hasu andv
asymmetric about thex-axis, symmetric
about they-axis; w shows no
~a!symmetries.

Now there is planar~a!symmetry in respect ofu andv, or ~a!sym-
metries for the axial displacementw, but not both. Thus it appear
that the occurrence, or otherwise, of a double decay mode dep
on the degree of~a!symmetry in the displacement field.
Transactions of the ASME
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On Source-Limited Dislocations in
Nanoindentation

M. X. Shi
Department of Theoretical and Applied Mechanics,
University of Illinois at Urbana-Champaign,
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The discrete dislocation model is used in this note to investigate
the source-limited dislocation generation and glide in nanoinden-
tation. It is shown that once there are enough sources for dislo-
cation generation, the material behavior becomes independent of
the dislocation source distribution.@DOI: 10.1115/1.1751185#

1 Introduction
Nanoindentation has become a major experimental technique to

probe the mechanical properties of materials at the nanoscale,
@1,2#. Dislocation glide underneath the nanoindenter is identified
as the key mechanism of plastic deformation in nanoindentation,
@3,4#. Dislocation loops are observed near the edge of the nanoin-
denter,@4#. The quasi-continuum analysis,@5#, shows that disloca-
tions are indeed generated right underneath the corner of the rect-
angular indenter and then moved into the bulk material. In this
note we present a discrete dislocation analysis to investigate the
effect of dislocation source distribution in nanoindentation, par-
ticularly the source-limited dislocation generation and glide~i.e.,
very few sources for dislocation generation!. Following Shi et al.
@6#, we modify the two-dimensional discrete dislocation model of
van der Giessen, Needleman and co-workers,@7,8#, for the equi-
librium dislocation analysis by requiring that the glide component
of the Peach-Koehler force on each dislocation vanishes at each
time step.

2 Equilibrium Analysis of Discrete Dislocations
We study a region of 4mm32 mm subject to pressure on the

top surface over a zone of 0.8mm. The Young’s modulus is 70
GPa, and Poisson’s ratio is 0.33. Figure 1 shows the symmetric,
right-half region~2 mm32 mm!. The symmetry or traction-free
conditions give that the shear stress tractions vanish on all bound-
aries. In addition, the left boundary is subject to the symmetry
condition ux50. The right surface is traction free, so is the top
surface except over the loading region where the pressure is ap-

2,
Finally, we note in Table 2 a decay rate which approaches t
slowest antiplane strain shear decay rate ofkb5p/2, with an error
of less than 0.6% whena/b>10.

4 Concluding Remarks
For the rectangular cross section, there are always eigenm

that decay slower than the Papkovitch-Fadle~P-F! modes; typi-
cally these are modes characterized by a bending of the c
section, which would be precluded by plane stress/plane st
assumptions. The exception is for a compact cross section, th
close to being square, when slowest decay is for a mode as
ated with a bi-moment. However, the P-F modes remain impor
as a means of classification of the various decay modes.

In discussing the decay rates, attention has focused on the s
est, as it is these which validate Saint-Venant’s principle; for
square cross section, the slowest Saint-Venant decay is
exp(21.6639z/b)5exp(24.7062z/d) whered52A2b is the sec-
tion diagonal, which is the greatest linear dimension of the cro
section; this implies that stress level reduces to less than 1%
free end value at distancez5d from the free end, indicating tha
SVP is clearly applicable. On the other hand, at first sight a v
small decay rate, such askb50.0648 for aspect ratioa/b520,
Table 2, might suggest that SVP is inapplicable; indeed the st
level only reduces to 87.8% of its free end value at distancz
52b ~that is, distance 13plate thickness! from the free end. How-
ever, if the decay characteristic is expressed in terms of multi
of the diagonald52A401b, decay is as exp(22.5952z/d). This
implies stress reduction to less than 7.5% at distancez5d from
the free end, and to less than 0.6% at twice that distance; thus
is still clearly applicable so long as the decay characteristic a
more importantly, the sense in which SVP is understood, is
terms of multiples of the cross section greatest linear dimen
which is dominated by plate width 2a for this aspect ratio.

Nomenclature

a, b 5 semi-width and semi-depth of rectangular cross
section

d 5 greatest linear dimension of cross section
(d52Aa21b2)

i 5 (21)1/2

k 5 decay rate (k5 ln l)
l c 5 characteristic length

u, v, w 5 displacement components in thex, y, and
z-directions

x, y, z 5 Cartesian coordinates
l 5 decay factor, eigenvalue of transfer matrix
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pressure in the finite loading region~0.4 mm! to represent the
indentation. The bottom surface is also subject to boundary c
dition uy50.

The right-half region in Fig. 1 contains 18 slip planes with t
slip plane spacing 112.5 nm. We have chosen the slip planes
allel to the direction of pressure~on the top surface! since these
slip planes allow dislocations to move downward, which is co
sistent with that observed by Tadmor et al.@5#. Initially, the solid
is assumed to be free of mobile dislocations, but to contai
random distribution of dislocation sources and point obstac
The sources mimic Frank-Read sources and generate a disloc
dipole when the Peach-Koehler force exceeds a critical va
@6–8#. The obstacles, which could be small precipitates or for
of dislocations, pin dislocations and will release them once
Peach-Koehler force attains the obstacle strength,@6–8#.

There are three sources for dislocation generation~marked by
open circles! randomly distributed on each slip plane, and th
strength follows a normal distribution with the mean streng
t̄NUC550 MPa and standard deviation 0.2t̄NUC510 MPa. Once
the glide component of the Peach-Koehler force exceedstNUCb
over timetNUC50.01ms, a dislocation dipole is generated,@6–8#.
Hereb50.25 nm is the length of the Burgers vector, and the gl
component of the Peach-Koehler force on theKth dislocation is
given by

f K5nK
•s•bK, (1)

wherenK is the slip plane normal,bK is the Burgers vector of the
Kth dislocation ands is the stress field excluding the contributio
from theKth dislocation itself.

There are ten obstacles~marked by solid circles! randomly dis-
tributed on each slip plane, with the obstacle strengthtOBS
5150 MPa. When a dislocation meets an obstacle, it is pinne
this obstacle until the glide component of the Peach-Koehler fo
given in ~1! exceedstOBSb. On each slip plane there is an add
tional obstacle very close to the bottom surface with very la
obstacle strength in order to prevent dislocations from exiting
bottom surface. This represents~or mimics! the effect of a hard
substrate that blocks dislocations at the film/substrate interf

Fig. 1 Random distribution of dislocation sources „open
circles … and obstacles „solid circles … on slip planes „dashed
lines …. There are 18 slip planes in the 2 mmÃ2 mm region, with
3 dislocation sources and 11 obstacles on each slip plane. The
pressure is applied over a region of 0.4 mm on the top surface.
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Dislocation annihilation is also accounted for. Two dislocatio
with opposite Burgers vectors on the same slip plane annihi
when their spacing is less than 6b.

The same approach of van der Giessen, Needleman, and
workers,@7,8#, is used to decompose the problem into~1! an ana-
lytic solution for dislocations in an infinite solid, and~2! a finite
element solution for a dislocation-free solid with finite boun
aries. The finite element method can handle the second prob
very effectively since it does not involve any singularities,@7,8#.
However, Our analysis is different in that all dislocations rea
equilibrium within each time increment, though they may exit t
solid ~from the top surface!, or be pinned at obstacles. The disl
cation positions are solved iteratively within each time increm
until the glide component of the Peach-Koehler force vanishes
every dislocation,@6#.

3 Results
Figure 1 also shows the dislocation distribution on all 18 s

planes in the solid at the pressure 0.012E, whereE is the Young’s
modulus. The distance between the end of loading region and
nearest slip plane is 6.25 nm. It is clearly observed that m
dislocations are generated on the slip plane closest to the en
loading region. This is due to the high stress concentration at
end of loading region,@9#. In fact, the normal stress in the direc
tion perpendicular to the applied pressure is even singular at
end of loading region,@9#. The pattern of dislocation distribution
shown in Fig. 1 is similar to the patterns observed in the qua
continuum analysis,@5#, and experiments,@3,4#.

In order to examine the effect of dislocation source distribut
in nanoindentation, we have also studied the same region~2
mm32 mm! with 6, 53, and 160 slip planes. The slip plane spa
ings are 337.5 nm, 37.5 nm, and 12.5 nm, respectively. The siz
loading region remains the same~0.4 mm!. The number of dislo-
cation sources and obstacles also remain the same on each
plane~3 and 10, respectively!, but the total number of dislocation
sources and obstacles for 6, 53, and 160 slip planes are app
mately 1/3, 3, and 9 times of those shown in Fig. 1 for 18 s
planes. The distance between the end of loading region and
nearest slip plane is 106.25 nm for the solid with 6 slip plan
and this distance becomes 6.25 nm for 18, 53, and 160 slip pla
Figure 2 shows the applied pressure normalized by the You
modulus versus the indentation depth for above four sets of
planes, where the indentation depth is the maximum normal
placement~under the pressure! at the symmetry line. It is clearly
observed that the curves for 18, 53, and 160 slip planes are es

Fig. 2 The applied pressure „normalized by the Young’s
modulus … versus the indentation depth for the 2 mmÃ2 mm re-
gion in Fig. 1 with 6, 18, 53, and 160 slip planes
Transactions of the ASME



u

o

t

n

es:

sh,
of

is-
le

ek,
ld

i-

lly
ity,

and

man,
s-
tially the same, but the curve for 6 slip planes shows a m
stiffer material response. The latter is therefore called the sou
limited dislocation generation.

4 Concluding Remarks
The present note shows that, for source-limited dislocation g

eration~e.g., 6 slip planes with 18 dislocation sources!, the mate-
rial may display a stiff response. Once there are enough disl
tion sources~e.g., 18, 53, or 160 slip planes with 54, 159, and 4
dislocation sources, respectively!, the overall plastic response o
the solid becomes independent of the dislocation source distr
tion. The present model oversimplifies dislocation activities~e.g.,
two-dimensional analysis, one set of slip planes, disloca
sources!, but the above conclusion on source-limited dislocatio
in nanoindentation should hold qualitatively.
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