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On the Nearly Viscometric

Torsional Motion of Viscoelastic

Liquids Between Shrouded
vemisA- 59 | Rotating Disks

Department of Mechanical Engineering,
College of Engineering,

Wichita State University, Flow of a viscoelastic liquid in a cylindrical cavity, driven by rotating finite disks is
Wichita. KS 67260-01 3?; investigated. The cylindrical sidewall is fixed and the covers rotate with different angular
P Py velocities either in the same or in opposite directions. A regular perturbation in terms of
e-mail: dennis.siginer@wichita.edu . . . . . . .
Fellow ASME the angular velocity of the caps is used. The flow field is resolved into a primary azimuthal

stratified viscometric field and a weaker secondary meridional field. Results are presented
for a range of cylinder aspect and cap rotation ratios and viscoelastic parameters. Inter-
esting instabilities of the fluid of second grade are discussed. The controversy surrounding
the sign of the first Rivlin-Ericksen constant is completely irrelevant to the discussion. It
is shown qualitatively that loss of stability occurs repeatedly and bifurcating flows exist
for critical values of an elasticity parameter at fixed aspect and cap rotation ratio.
Branching flows also occur at a fixed value of the elasticity parameter for critical values
of the cap rotation ratio, when the aspect ratio is fix¢BOI: 10.1115/1.1651538

1 Introduction ing bifurcating flows which may happen for either critical values
Flow in a cvlindrical cavity driven by rotating finite Shroudedof the elasticity at fixed cap rotation ratio or critical values of the
y y y 9 nsée\p rotation ratio at fixed elasticity when the structure of the

orking fluid is that of the fluid of second grade. The fluid of

" WD describe qualitatively the behavior of slightly viscoelastic fluids
when angular velocities of the end caps are small. It may also fijidsteady nearly viscometric motions. The present study is impor-

a host of applications in the industry when the working fluid igant 1o point out the limitations of the fluid of second grade.

either Newtonian or non-Newtonian. This type of flow is relevant o, analysis is set in the context of the fluids of grade N
to gas centrifuges, computer disc drives, rotating machinery, vis-

cometry, etc. In particular, geometries with large aspect ratios may N
find applications in chemical mixers and rotating heat exchangers. S=21 S, Si=pA;, S=aiArtaAl

The Newtonian problem has been rather extensively investi- . )
gated starting with Dorfman and Romaneriid, and Pad2,3]. Sy= BrAs+ Ba( ArAr+A1AL) + Bs(trA)A,, . . .

Later contributions include those of Dijkstra and Van Hejt

and Duck[5]. The first publications in this area concerning viswhereu, «;, andg; are the constitutive constants of the fluid of
coelastic flows, to our knowledge, are by Kramer and Johfgpn grade one(Newtonian two and three, respectively, is the
and Hill [7]. A new constitutive equation for slow, nearly Visco-Rlvlln-Erlksen tensor of orden which can be obtained from the
metric motions of viscoelastic liquids is derived in the former, antgcursion formula,

_applied to the motiqn of a viscqelastic liquid dr!ven by the rotat- L=gradu, 2D=L+LT, A,=2D,

ing top cap of a cylindrical cavity of aspect ratio one. The latter
provides experimental validation of the theory developed by A=A +LTA +A,L.

Kramer and Johnsof6]. The swirling flow of viscoinelastic and . . . .
viscoelastic fluids driven by therotation of a disk in a cylindrical , "V& USe a perturbation algorithm in terms of the angular velocity
casing has been investigated recently by Escudier and C@len of the end caps to resolve_th(_a field into a primary, a2|muthal,
Itoh et al.[9,10], Moroi et al.[11,17], and Stokes et a[13,14. yertlcally s§re_1ﬂfned viscometric field and a weaker secondary field
Neither of the early paperEs, 7], considers the effect of the aspecfn the meridional plane. The former and the latter are first and

ratio and the effect of the differentially rotating end caps, either ﬁ]econd-order effect_s, respectively (i the common denominator
of Lpe angular velocity of the caps. The ongoing controversy about

the same sense or in opposite directions, and none of the reGHa sign associated with the first Rivlin-Ericksen constaptis

'C?\;E:t'?r?t;jnds.t.gﬁptfrg;;h; ﬁ]f;esg gfffeg: d('aﬁi:)ennst.'gg tquc:e}m%pmpletely irrelevant to our analysis. That is because the elasticity
ISKS. I ) . We ' e arameter which governs the meridional field at the second order
ence on the flow field of the varying elasticity of the fluid an

. ) - T S s defined in terms of the sum, + «,>0 and«, does not appear
provide a detailed description of the flow field including 'ntereSténywhere by itself. Also, the instabilities we discuss occur for
Cormibuted by the Abolied Mechanics Division offE A © rather small values of the elasticity parameter in question. There-

ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ‘At ;

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- fore any objeptlon to the use of the fluid of Seqond grade on the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 29_r0l_~mds that it may be good enough only for slightly viscoelastic

2001; final revision, Sept. 19, 2003. Associate Editor: L. T. Wheeler. Discussion ¢iguids does not have any support.

the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal ofThe analysis could be easily extended to the third and fourth
Applied Mechanics, Department of Mechanical and Environmental Engineering Uni- P ; : f

versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will erders to prowc_ie_ further correctlons_to the primary aZImUth.al and

accepted until four months after final publication of the paper itself in the ASMS€condary me”dmna.l fle.IdS, resp.ec'.uvely. But these corrections do
JOURNAL OF APPLIED MECHANICS. not change the qualitative description of the field. On the other
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Fig. 2 Level lines of azimuthal velocity: 6=0.5; caps counter-
rotating with the top cap twice as fast as the bottom, A=—2

2.1 First-Order Solution. The first order problem is ob-
tained from Eqgs(1)—(4)

Aut=0, V.uY=0, uP=ve,, (5)
uB(r,00=xre;, u(r,—d)=re,, (6)
A=0,tk; keR u(a,z2)=0, u(0z)<+c. @)

The problem defined by Eq¢5)—(7) is reformulated in terms of
dimensionless( &, 7)-coordinates and a dimensionless azimuthal
velocity v obtained from the corresponding dimensional variables

, . o . by dividing with the disk radius.
hand, if the liquid is strongly shear-thinning, the azimuthal visco-

metric field will be noticeably affected. A correction to the first 1 v

order may have to be made by extending the analysis to the third E(él{g),g* — 1tV =0,

order in the algorithm where the parametgs, ¢ 33) defining the ¢

shear dependent viscosity behavior of the liquid appears for the W(EO=NE  v(E,—8)=¢ w(ly)=0, 1(0,p)<o,

Fig. 1 Flow configuration

first timg. (ﬁ2+ B3) Is nega@ive and pos_itive, respective_ly, for 8)
shear-thinning and shear-thickening liquids. Our analysis there-

fore takes into account only the elasticity of the liquid and works r z d v

better for liquids with rather large second order range. For in- =5 nm=3 6= v=—

stance, polyacrylamide solutions of any concentration have a
rather small second-order range whereas solutions of methacryl&fg solution reads
copolymer in oil have considerably larger second order range.

‘We present a complete _discussion o_f the change in the flow field (¢, »)= 2 BiJ1(A&)[ACh(Am) +C SNAD) ],
with changing aspect ratio and rotation ratio of the caps for a k
range of elasticity parameters. In particular, we show numerically
that repeated loss of stability and subsequent bifurcations occurin g _ 2 _ 1-ACh(—A9)
the flow field of the fluid of second grade for both counter and KT AL(AY K Sh-A) '
same sense rotation of the caps at almost any aspect ratio V(I(I‘;]r

critical values of the elasticity parameter and cap rotation ratio, ered, andJ, are the Bessel functions of the first kind and first
and second orders, respectively. The convergenc®)ofo the

9
J1(A) =0,

2 Mathematical Analysis
The flow configuration is shown in Fig. 1. The relevant field

equations and boundary conditions read \ \ e
Du o \
pa:—VdHV-S, V-u=0, 2 o 29 ‘
u(r,0)=ArQe,, u(r,—d)=rQey, u(a,z)=0, 3)
where S is the extra stress given kit); and ® is the modified
pressure field which includes gravitational effects. We note that
u=Ue +Ve,+We,, U(Q)=U(—Q), A
V(Q)==V(=Q), WQ)=W(-Q), 4)

and expand ,W) and (V) in power series even and odd éb, — T

respectively, with the coefficient of thieh-order term in the series

thenth-order partial derivative evaluated@t=0. The extra stress Fig. 3 Level lines of azimuthal velocity: ~ =0.5; same sense
Sis expanded in a Fohet series around the base state, the state@fation with the top cap rotating twice as fast as the bottom,
rest. A=2

306 / Vol. 71, MAY 2004 Transactions of the ASME



Fig. 4 Contour lines of the dimensionless Newtonian second-
order stream function =2, A=—2
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Fig. 5 Meridional flow configurations in a tall cylinder, 6=2, at
fixed cap rotation ratio  |\|=2, with varying dimensionless elas-
ticity parameter  B. (a) <0.01; (b) B<B.:; (¢) B=PBc+&; (d)
B=Bc—&; (6) B=Bc+e; () B>Bcr; (9) B=Bc,; (M) p=0.1.
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Fig. 6 Meridional flow configurations in a tall cylinder, 6=2, at

a fixed value of the elasticity parameter B such that B<g.,,
with varying cap ratio \. (a) —2<A\<—1; A——1; (b) A==1; (¢)
—1<]<0; A—0; (d) A=0 (e) O<A<I; A—1; () 1<A<2; A—2; (9)
A=A+ (h) A>N,, () ASN,,.
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Fig. 7 Same as Fig. 6 except for ﬂ>ﬁc,. (@ A==%1; (b) —1
<A<0; A—0; (c) A=0; (d) A=A+ () A>N,,; (D A>SN,,.
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. . ) ) L - Fig. 10 Dimensionless meridional stream function contours.
Fig. 8 Bifurcated flow field configuration in the meridional Bgo.l 5=2 A=—2.

plane. Bis slightly larger than B, . B=0.03, 6=2, A=—2.

ramp functions on the top and bottom caps is quite good, es
cially when Cesaro sums are used. For instance, in the case ofi
top cap, we compute the Cesaro sug(¢,0) as

imary, azimuthal field for other cap rotation rativs —1, 0, 1
stigated in this paper are not included here in the interest of
space. Level lines foh=—1, 1 look very much like level line

1 N mog (A.E) patterns forn=—2, 2 in Figs. 2 and 3, respectively, except that
(€0 = NT1 v(£,0), Vm(gyo):z)\z Al\] '”A ) there is now symmetry with respect to the midligeane in the
1 T Anda(An) radial direction. And the level lines for the case of top cap at rest

Representative level lines of this primary, azimuthal field ar%‘.zo) show an almost rigid body rotation close to0, that is
given in Figs. 2—3 for one aspect ratiz=0.5 and cap rotation fluid rotation is very much like in concentric annuli close to the

ratiosh=—2, 2. We note that Newtonian solutions of the tyg XIS of rotation of the finite bottom disk.
were given first by Hor{15]. Figures for the level lines of the

(@) (B} (e (&) (e
@ ma o

Fig. 9 Bifurcated flow field configuration in the meridional Fig. 11 Dimensionless meridional stream function contours.
plane. Bis slightly larger than B, . B=0.0375, =2, A=—2. B=0.03, 6=2, \=—1.
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Fig. 12 Same as Fig. 11 except for B=0.0375

2.2 Second-Order Solution. At the second order the Stokes

problem obtained from Eq$1)—(4) reads

2puV. Vul=-vo@+v.52  v.u?=0,

u@(r,00=u®@(r,—d)=u®(a,z)=u®(0,2)=0.

A
9X107

Fig. 14 Same as Fig. 13 except for B=0.0375

and expres$10), in terms of dimensionless coordinatgsy,) de-

fined in(8),

2
AU=VP+ E[2,/3(|02+c2)— 12]e,— B*V(b2+c?).

12)

The extra stres§@ is obtained from(1). We introduce dimen- The variables!f,c) in (12) are defined in terms of the dimension-
sionless velocity and pressure fieldsand P and dimensionless less first-order azimuthal velocity,

parameterg3 and g* defined as
(2) (2)
u (O] a1t a
U= ;L’ P=—5, B= L . 2 px
pa pa

pa

26;(%

Fig. 13 Same as Fig. 11 except for A=0

Journal of Applied Mechanics
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Fig. 15 Bifurcated meridional flow field configuration.
slightly larger than  B,; B=0.03, 6=1, A=—2.
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Fig. 16 Bifurcated meridional flow field configuration. B is Fig. 18 Dimensionless meridional stream function contours.
slightly larger than  B,; B=0.0375, 6=1, A=—2. p=0.0375, 6=1, A=0.

We note that the combinations of the Rivlin-Ericksen constants
and a, which appear in(12) are related to the first and second
normal stress differences;(«x) and N,(«), respectively, in the
following way:

N;+2N N
! 2) 2a1+a2:|imf22,
k—0 K

a1t ay=Ilim
k—0

2

2k

> T

I

“ Fig. 19 Contour lines of the dimensionless Newtonian

m second-order stream function;  6=0.5, A=2. If A=—2, the field is
{ qualitatively the same with a stronger and weaker corner and

l ‘f central eddy, respectively.
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Fig. 17 Dimensionless meridional stream function contours. Fig. 20 Bifurcated meridional flow field configuration. Bis
B=0.1, 6=1, A\=—2. slightly larger than B, . f=0.02, 6=0.5, A=—2.
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Fig. 21 Bifurcated meridional flow field configuration.
somewhat larger than B.,. B=0.0375, 6=0.5, A=—2.

B is

where « is the shear rate. Introducing a dimensionless stream T=muQa®
function ¥ and taking the curl of12) twice, the momentum bal-

ance at the second order can be rewritten as

uy
==,

L2W =217 —4pB(b?+c?),, ¥
pa

1
L=(") g E('),§+('),7]7]1

(13)

a 1
T=27Tf I’ZSngr='rr,u,Qa3J §2vy,]d§,

0 0 (16)
a2

T
= Re= —.
14

277[162 d
= v ,
Loz Re ot

Equation (16) can be computed usin(®). C,, and Re are the
torque coefficient and the disk Reynolds number, respectively. We
already commented in Se@.1) that the convergence ¢9) to the

ramp function on the covers is quite good when Cesaro sums are
used. Nevertheless the series converge to zero at(fig@hand
(1,—6) and consequently in a small neighborhood of either rim
fail to represent the ramp function. As a conseque(it®, under-
estimates the torque. A better approximation can be obtained if
one assumes that the boundary layer thickness near the tip stays
constant,

CM:

(1-¢)°
3

1-¢
J §2vv,ld§+ v, e<l.
0

n=1-¢
In practice, there is always a small gap between the disks and the
side wall and the singularity is avoided. That the torque increases
very fast as this gap gets smaller has been shown by Schmieden
[17]. The singularity is of the form (&) ! and has almost no
consequence in computing the flow field since its effect is con-
fined to the immediate neighborhood of the rims. An excellent
study of singularities of this type is given by Van Heij48].

to be solved subject to the boundary conditions obtained from

1),
Y(£0)=V (§0=T({—-0)=Y ,(§—-6)=0,

(14)
(15)

3 Discussion

Close to the rotating covers of the cavity the primary surfaces
of shear are concentric cylinders. Normal stresses acting in the
radial direction are generated which compete with centrifugal

It is worthwhile to note that the dimensionless paramgder forces. If there is a balance, stagnation rings may result on the
which represents second normal stresses does not play a roledgers

shaping the flow field but enters the determination of the pressureror relatively high aspect ratios, say two for instance, the shear
field. The modified second-order momentum balai@, subject |ayer separating the top and bottom CW and CCW cells, respec-
to (14), (19), is solved using a novel numerical technique apprajvely, joins a stagnation line on the side wall to a stagnation point
priate for fourth-order operators generated by operators of tBf the axis of rotation both for strong counter and same sense
Stokes-Beltrami type given ifL3);, Siginer and Knighf16]. In  rotation when the liquid is Newtoniag8=0=8*), Fig. 4. When

this paper we adopt the aspect and rotation ra#e6.25, 0.5, 1, the fluid is only very slightly viscoelastic, strong enough normal
2andr=-2, -1, 0, 1, 2 and investigate the effect of the increasstresses are developed in the neighborhood of the corner of the
ing elasticity of the liquid on the flow field at fixed cap rotationfaster rotating disk and the side wall to overcome centrifugal
ratio together with the effect of the varying cap rotation ratio gbrces there and make the particles stall in the Ekman and Stew-
fixed elasticity. Results are presented in Figs. 4—22. To save a&fson layers on the cap and side wall, respectively, with the for-

much space as possible results ##0.25 which bear striking mation of two stagnation points and a CCW rotating cell around

similarities to 6=0.5 are not included.

that corner, Fig. &).

A comment concerning the torque on the covers is in order. Theas the elasticity of the fluid is on the rise, the stagnation points
torqueT depends on the first-order velocity to the second order i and B move towards the center on the cap and down the side
the analysis, and thus is determined entirely by the Newtoniggyll, respectively, pushing C down and D up. At the same time

stress field up to this order,

N A

o
/S SN
S O

Fig. 22 Dimensionless meridional stream function contours.
p=0.1, 6=0.5, A\=—2.

Journal of Applied Mechanics

increased elasticity generates strong enough normal stresses in the
neighborhood of the corner of the slower rotating disk and the
wall to result in the inception of a CW cell, around that corner,
Fig. 5(b). With further increase in the value @ stagnation point
C is pushed further down by the faster growing primary non-
Newtonian cell around the corner of the faster rotating top disk
and the wall. But it cannot come close to the lower coffier 9),
because the weaker, non-Newtonian corner eddy there is also
growing, although at a slower rate than the eddy around the upper
corner(1,0).

Depending on the aspect ratio, whér1, for a critical value
B of the elastic paramete® between 0.02 and 0.03, there is a
loss of stability and the stagnation point C suddenly moves onto
the slower bottom cap, Fig.(&. The stagnation points H and F
move into the flow field, join up and form a saddle point, Figs.
5(d), 8, and 15. The bifurcated field is made up of CCW upper
right and lower left corner eddies together with CW upper left and
lower right eddies separated by the saddle p@ihF), Figs. 3d),
8, and 15. If the aspect ratio is below on¥s1, this bifurcation

MAY 2004, Vol. 71 / 311



occurs for a critical value o8= g, smaller than 0.02. For in- >3  with the exception that now there is only one bifurcating

stance in Fig. 20 wheré=0.5 and$=0.02 it has already oc- 5, Thys B<PB. and B> ., define two definitely different

curred. Furthermore, stagnation point D which was on the bottoffhsses of flow structure development and they are analyzed sepa-
cap to start with in the Newtonian cags0, Fig. 19, stays on the rately in Figs. 6 and 7, respectively.

bottom cap when C jumps from the side wall onto the slower g5 e |atively tall cylinders, say=2, there exists a four cell

- figuration in the meridional plane, whenl>\>-2, Fig.

bottom cap. They are joined b_y a shear layer sta_lrting and_ e_ndlg@n
on the bottom cap, encapsulating a CCW eddy, Fig. 20. This is t8&;) \yith the shear layer D-C below the mid plane but moving up

Newtonian lower corner eddy of Fig. 19, now pushed towards thgy decreasing cap rotation ratia,~—1, and coinciding with
midspan of the bottom cap. __the mid-plane fof\|=1. Depending on the value ¢, the stag-
‘The saddle pointH,F) moves upwards, towards the faster disk ation points on the side wall may or may not have relocated on
with further increase ing, Fig. Sc,d. The stagnation ring C iS the dividing shear layer whep|=1 is reached. For instance in
pushed further toward®,—¢) squeezing the lower left eddy into rig 17 they are still on the side wall fg@=0.03, but they have
smaller and smaller areas. But C can never make 01 d). peen on the shear layer already for quite a while in Fig. 12 for
When g reaches a second critical valye= S, , stability is lost 3=0.0375. For larger values ¢# they would be located on the
again and a second bifurcation occurs for &(&,<0.0375, Fig. centerline. In Fig. 6 we consider the case of the stagnation points
9. The top right corner, normal stress effects dominated eddy, aBtnd H still on the side wall whefz|=1, ﬁ<ﬁcr and in Fig. 7
the lower left centrifugal forces dominated eddy become part ofve look at the case of the stagnation points B and H located on the
larger cell, separated by a new saddle poB\D), Figs. 8¢) and  anterline wher\|=1, g> Ber -

9. The stagnation points H and_F, which formf_sd the former saddleag the rotation ration—0, curiously enough, the stagnation
point (H,F), now may be conceived of as having moved onto th§

. . i -~ point F on the slower bottom cap remains almost stationary in
cen;erllne and.3|de wall, respegtlvely, to form two CW rotatingjther case, Figs.(6) and 1b), as the other stagnation points
eddies, a centrifugal forces dominated eddy in the upper left an -

a .
normal stress effects dominated eddy in the lower right cornef8°Ve and alter the flow structure. Whei< S, , stagnation
Figs. 5e), 9, and 16. For aspect ratios below o1, this sec-

pdints D and C move up and converge to the upper right corner
ond bifurcation occurs for values of the elasticity paramet

él’,L,O) gradually squeezing out the CCW, normal stress dominated
- . ) ) cell, around that corner. Ultimately A and B collapse onto the
smaller thanB.,<0.03, depending on the aspect ratio, with the,ner right corner1,0) with D and C quite close to the corner
additional change that there is a three-cell structure in the merlgi-o) thereby forming a three cell structure in the meridional
onal plane and no saddle point, Fig. 21. The smaller the aspﬁféne’ Figs. &) and 13, with a small CW cell in the upper right
ratio the smaller becomes the critical value @fat fixed cap corner. On the other hand Whe®>B although stagnation
N Ccro»

rotation ratio. . ;
Increasing further the elasticity of the liquid results in the mipOIntS D and C still converge t.0) as\—0, A and B collapse

gration of the saddle poir{B,D) towards the slower rotating bot- onto (0,0 |nste_ad 0f(1.,0 as Was_the casc_e previously Whiﬁh
tom disk, Fig. 5f). At the same time the bottom right and the t0p<,8u, squeezing out the Newtonian centrifugal forc_e dominated
left corner eddies grow and decrease in size, respectively. But I upper cell, Figs. (b,c) and 14, and thereby forming a CCW
time, the stagnation point C does not show a sudden jump onto ffdl around the upper right corner. o
centerline as it did when it moved from the side wall onto the AS A—1, the flow structure development shown in Figs. 6 and
bottom cap as shown in Fig(d. Instead it moves continuously, 7 for A—0, 0>\>—1, is repeated in reverse order. Asncreases
first coinciding with(0,— &) and then starting to climb toward the further, the shear layer D-C is pushed further and further down,
top (0,0) on the centerline. By the time it moves onto the centef-i9. 6(f). For a critical value ofn =\, a loss of stability and
line the lower left CCW cell, below the saddle point, is almog®ranching occur, the_stag_natlon points H and F move into the flow
gone. As it keeps moving up, this cell completely disappears, tie form a saddle point with upper right normal stress and lower
top left Newtonian cell becomes smaller and smaller, Fig).5 left centrifugal force dominated cells, whe®< g, Fig. 6g).
Eventually, for values 0B>.0.0$ the stagnation points A and HFor instance, if3 is close toB., from below,3< B¢, N is close
collapse on_tCD,O) and the field is mad_e up of two normal-stres$; ) =2 from above\,>2. On the other hand wheg> 3, as
effects dominated CCW and CW rotating cells on top and botto. .1 3 flow structure similar to the one shown in Figoj7exists.
respectively, Figs. &) and 10. . As a result the shear layer D-C, as it moves down with increasing
The above chain of events is somewhat different whed. If ) ‘squeezes the left bottom CCW eddy. Whereaches a critical
6=1, increasing the elasticity again leads to the annihilation of the, "~ . .
top left Newtonian cell and the disappearance of the saddle polfif U er different from the previous., a branching occurs, the
(B,D), but now the stagnation point C although it moves towardgadnation points F and H move into the flow field to form a
(0,—5) on the bottom somewhat, stays on the bottom cap, néfddle point, Fig. (d). For instance, if3 is close tog, from
even reaching midspan, even for quite high valueg,ofig. 17. above,3> B, A is close toA=2 from below, A\, <2. With
When 6<1, of the two stagnation points on the bottom cap in Figurther increases in the saddle pointH,F) moves towards the
21 right after the second bifurcation, the one on the right is almosibwer bottom cap in either casés 8., , and a smooth and con-
stationary ag grows, and the one on the left, which defines th@nuous transition to a two cell structure occurs as shown in Figs.
boundary of the only Newtonian cell among the three in Fig. 25(h i) and 7d-f).
moves briskly, reache®,— ) and is already on the centerline for When aspect ratia’ is smaller than one, the same chain of
the same value 98=0.1 as in Fig. 17 whe=1, Fig. 22. events occurs with some variations. For instance whkgnal the

Next we offer a qualitative analysis of the flow structure in thetagnation points H and B can never be located on the centerline,
meridional plane and of the migration patterns of the stagnatie® matter how high the value & is.

points (rings) at a fixed value of the elasticity paramej@when

the cap rotation ratio varies from strong counter rotation to strong

same sense rotation. We observe that for any aspect ratio, wiFggferences
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Lateral Deflections of Webs in
Air-Flotation Ovens

Peter M. Moretti

School of Mechanical and Aerospace A long web span supported by many, regularly spaced, alternating air-bars is studied. The
Engineering, focus is on the lateral forces on the web due to the interaction of lateral curvature with
Oklahoma State University, out-of-plane deflections. The effect of stretching of the elastic web material is included,
Stillwater, OK 74078-5016 and the effect of high web speed is handled by distinguishing between the tension in the
e-mail: moretti@ceat. okstate.edu material Ty, and the apparent tension,f,=Tma— wv?. The governing partial differ-

ential equations for a continuous representation of the web’s lateral deflection, stability,
and control is developed for both straight and cambered webs. The dimensionless param-
eters for web-tension effect, web-camber effect, and stretching effect are identified. The
influence of tilted air-bars is studied, towards developing a control mechanism to com-
pensate for cambefDOI: 10.1115/1.1756922

Introduction of the web is reduced7]. Where there are many repeated support
In the operation of flotation ovens, lateral deflections have be jements, we will treat the web as a periodic structure, obtaining

P ' é%ivalent continuous-beam properties. The contribution of each

I

?otislf)rr:/egr. ;?_‘:uls ?Jrr]t Rg?gigt apgggrlﬁrﬂ'sﬁ %caili]seotp \(/avrai(;it?age ment to these properties will be obtained from the geometrical
9 pp P rying ationships between out-of-plane deflections and lateral

coatings, yet the length of the ovens is limited by our ability t
; —Curvature,[8].
control lateral excursions of the web. For the purpose of analytic : . . . .
The resulting analysis must explain the observations made in

f’ltnuggla?{oig ggmegzngz'&'g z:qir?tr)]grjg?tltlae:gaetlii m?/\‘/'ittﬁ"tc)re%?rlfgar%ests on lateral deflection in air-support conveyance by Ron Swan-
9 P on[5], and further tests on extensional resilience of an air-floated

the entire length of the web within the oven may be represented a .
a single con%inuum element with continuoug/-beamp propertie\géb by Ron Swanson, Young-Bae Chang, and Peter Mt
These averaged properties depend on the engagement geometry oflateral forces required to deflect the web are small.
the alternating air-bars, the air-cushion characteristics of each bar webs in air-suspension ovens tend to diverge to one side or
the web tension, and the web elasticit$ee Fig. 1. the other.
» web camber aggravates the lateral divergence.

« correction/control by tilting air-flotation bars yields small
Background improvement.

The systematic treatment of the lateral deflections of webs in
paper machin_es, printing presses, and plastic-film manufacturimd span Behavior
and coating, is approached by treating the web as a very deep, ] )
very narrow rectangular beam under tensid, If the bending ~ As we pointed out in an exploratory papi8], there are several
moment exceeds a critical value, putting one edge of the ng‘ferent. factors at play in the lateral deflection of a web in an
under compression which the web cannot sustain without bucki-flotation oven:
ling, nonlinear effects are introducg@], and the web loses some
lateral stiffness; in web-line operation, there is incentive for main-
taining tension and avoiding a slack edge.

When there is good traction at the rollers, the end conditions of
the web-as-a-beam are fixed lateral position and slope at the up-
stream end, and right-angle entry onto the roller at the down-
stream end[1]; this latter condition is frequently employed for
lateral guiding of webd,3,4]. The remaining steady-state end con-
dition, for the case of full-width traction, is zero lateral curvature
while entering the cylindrical exit roller, since both edges must
feed through at the same rate. However, tests indicate that, even
when traction is sufficient to assure right-angle entry into a roller,
there may be partial slip, allowing the fourth end condition to
approach zero-moment instealg]. This has implications for
cambered(laterally curving webs and also for moment transfer
across rollers, between spaf§].

In flotation ovens, the air-supported web undulates up and
down over alternating air-bars; as a result, the extensional stiffness

» A web on air-support bars is supported by the air cushions in
a “springy” fashion, permitting deflections in the out-of-
plane (usually vertical direction. Because of the accordion-
like undulations of the web, these potential deflections cause
it to be less stiff with respect to longitudinéMD) extension

as well, which in turn yields less beam stiffness in the lateral
direction (CMD), so that small lateral forces can result in
significant deflection to one side or the other. Lateral stiffness
can be improved by using low-flying-height airfoil bars giv-
ing “stiff” support, or by using high tension, or by using
shallow undulations.

When a perturbation causes the mid-span of the web to de-
flect to one side, and that side of the web curves outward, the
inside of the curve floats higher off the air supports, and the
outside cinches down tighter on the supports, so that the web
tilts over each pad. As a result the norniiét ) vector of the
pressure force over each pad acquires a lateral force compo-
nent towards the outside of the curve, tending to increase the
Coributed by the Abplied Mechanics Division offE AMERICAN SOGIETY OF lateral curvature further—a destabilizing effect inherent in
e e o ks, this geometry(A secondary efect is a small cross-flow drag

CHANICS. Manuscript received by the Applied Mechanics Division, March 12, 2001; force in the OPDOSite direction. . L

final revision, November 3, 2003. Associate Editor: W. S. Saric. Discussion on the * Web camber is one of the perturbations which initiates web
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of divergence. Furthermore, when a web has camber, the longer
Applied Mechanics, Department of Mechanical and Environmental Engineering, ; ; ;

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be edge of the web will tend to float hlgher off the air _supports,
accepted until four months after final publication in the paper itself in the ASME ~ SO that the normal vector of the pressure force will tend to

JOURNAL OF APPLIED MECHANICS. push the web towards the side with the shorter edge.
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z . ated by an air-bar. The lift was shown to be a function of the
1"_’l_’ spacing between air-bar and pléfiging heigh). The shape of the
VA ,(\/ a'r : | a1r /\ glotted flfJnr(]:tion,t;c,hownhin an ealrlier Ipapéﬁ}, d((ajpends ondtheff
Zpar | | esign of the air bar. A theoretical analysis based on ground-effect
r-J VAR ! hovercraft theory was developed by Y. B. Chang ef H#—14 for
HTr‘ W '_' — U symmetrical “pressure-pad” bars, matching the experimental re-
sults. Some asymmetrical designs, notably “airfoil” or “Coanda”
bars, give “stiffer” support to the plate, showing more rapid in-

air air all'

Fig. 1 Nomenclature; the sine wave is drawn with exaggerated crease of lift with dgcrease iU flying height.
amplitude—actual amplitudes are small, and Zpar May be Although our flexing web differs somewhat from the flat plate,
negative and the simple pressure distribution assumed for this analysis is

also different, we can at least conclude that the nominal pad-
pressurd® is a somewhat similar function of the flying height. The
« Since the tilt of the web, not of the air-bar, determines th@ominalflying height is €—z,,), whereZ is the sinusoidal am-
lateral component of the lift vector, tilting air-bars has only ®litude of the web, and,, is the distance by which each air-bar
modest effect on lateral dynamics—but it does introduce itrudes past a straight line through the oven—a positive number
secondary effect of biased lateral pressure distribution, withthe alternating air-bars overlap, negative if they do not cross the
consequences for both the tension profile and the lateral dregntral plane. We can generically represent this functional rela-
forces. tionship as

In subsequent sections we will quantify these effects. P=HZ,2ya) =F(Z~ Zpa) 3)

. . For small deflections, it may be convenient to linearize this rela-
Extensional Stiffness tionship near the design point with an air-cushion “spring-

n A :
Sinusoidal Geometry. We will approximate the web path constant’«=—dP/dZ, so that the pressure is

(Fig. 1) by the first term of a Fourier series representation F~Pgesigi= K(Z— Zgesign
_ . mX . 3mX X dF
Z=21 smT—Z3 S|n7+ .=z sin—- 1) 7=k 4)

where? is the spacing betwee(alternating air-bars andZ is the
half-amplitude of the undulation. The equilibrium relationship b
tween apparent tension-per-unit- widft;pr(Tmat uv?) and the
gage pressurp acting on the flexible web, as shown in Fig. 2, i

eWhereK is typically positive for stable air-bar@s.e., the pressure
drops when the flying height increagealternatively, for larger
deflections, it may be better to fit a hyperbola to the function,
ﬁeadlng to the expression

9%z

2
= z i W_X — i 7T_X (Zdesign_ Zbar)
Poo= " Tapr 7.2 = Tae Z( 0 ) sing=Psing @) = Paesot 7~ 2
where dj:_ P (Z desigri™ Zbar) )
2 dz =~ ' desi T, 2
P:Tapp'z(z) dz e (Zfzbar)2
4

If the relationship between pressure and flying height has not been
for an average pressure ofP27, and a total lift of Pb€/7w measured for a particular air-bar, it may be calculated on the basis
=2bT,,Zm/ €, over each half-sine-wave opposing an air-banf hovercraft theory. The applicable ground-effect analyses,
The constant differencpu? between theapparenttensionT,,, [12,13, generally lead to a basic form
measured from roller reaction forces, and tiaterial tension F=P,(1— e consianZ -z, ©6)
Tmat Observed in the stretching of the web material, is small in 0
most plastic-coating applications; but we will maintain the distingslus some added complexity relating to the difference between the
tion in order to make our equations applicable to high-speed welsminal flying height and the actual distance from the edge of the
as well. slot to the corresponding location on the web.

This gives us one relationship between air-pad pressure,Any of these representations &{Z—z,,) can be inserted into
deflection-amplitude, and tension; we need a second relationshig. (2), solved for tension
to get useful stiffness results.

e\2F
Pad Pressure Versus Flying Height. In a long series of ex- Tapp:(;) 7 (7)
periments carried out in the Web Handling Research Center at
Oklahoma State University by Pinnamargfl], Perdud 10], and and differentiated to obtain
Nisankararad11], the pressure field between an air-bar and a flat 2
plate was measured, and integrated to obtain the total lift gener- d_T: ;1 T. _ ﬁ ﬂ: @)
dz z | " \q) dz]|

This gives us a second relationship between tension, deflection-
amplitude, and the pressure function.

web
S Extensibility. The path lengtls of the web for each machine-
TTTP;LL ‘(\/ Al /‘\ length ¢ (and the overall web path leng®for the overall ma-
v X chine lengthlL) is
e ey ¢
X

Y s=f \/1+azco§%dx 9)

0

Fig. 2 Relationship between web curvature  y” and pressure ) )
distribution p, both shown as functions of  x wherea£ 7Z/¢. Fora<1, we can use the series solution
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S s 1 3 5 Lateral Effects
—=-=1+-a’- —a*+ -—a’— ... (10)

L ¢ 4 64 256 Lateral Bending Stiffness. J. J. Sheltorj1] treated a web as

a flat beam, resisting lateral curvature with a lateral bending mo-

which shows that, whea?<1, i
mentEl-y”. The effective value of Young’s modulus for a web of

s 1 272 width b and cross-sectional aréais obtained from
s=1+ - af=1+—
4 4 4¢ EerA=Lbkeg (18)
w27 and
ds=—-dz
2¢ I=A-b?%12 (19)
wZ so that
ds= T dz (11) Lb?
Eeil = =5k 20
Inverting theT—Z Eq. (8) above, efft = 1 "eff (20)
dz —7 where ke may be obtained from Eq€13), (14), and (15), or
—_———— (12) directly from an extensional test with the air supply turned on.
dT _ f d_]: Thus we can obtain the effective bending stiffness from oper-
P\ ) dz ating parameters and material properties.

. —dT 2L

Kar= g = o2 : 13)

we combine it with Eq(11) to eliminatedZ in the equation for ~ Lateral Moments. The complementary way of viewing the
dS, and obtain lateral bending stiffness is to consider lateral curvature. Like ex-
tension, bending has both an elastic material and an air cushion
€\2dr component: The total lateral curvature is the sum of two compo-
Tapp— = dz nents, the apparent curvatuees seen from a top vievdue to the
geometric coupling of out-of-plane deflections with the projected
Since dengthenecpathd Sshows up as an apparesttorteningof  path, y?;, plus the curvature due to differential stretching of the
the web as seen from the ends of the owT\dSis thenegative \eb material by the lateral bending momeyit,,:
of ki, the extensional spring constant per-unit-width of the web

in extension, due to the air-cushioning. Yioa= YmatT Yair

In general, observation§?], confirm that extensional stiffness
increases if tension is increased; in one test, when the weight Y ., 12XMoment
attached to the end of a stationary web in an air-support oven was Ymat= € Yiota™ 3

i X . Lb K mat

doubled and tripled, the natural frequency of extensional oscilla-
tions c_hanged only slightly, i_ndicating that the spring constant 12% Moment
approximately doubled and tripled as well. yor=(1=§&)-yo=

The extensional spring constaky;, obtained in Eq.(13) ac- Lb3Kai
counts only for air-cushioned out-of-plane deflection; the deflec-
tion due to the material’s elastic stretching ,  12XMoment

I — (21)
Ema Lb Kes
Kima=— o (14)
mat™ b The apparent lateral bending componetl, averaged over

tiple elements of air support, requires the path of one edge of

. . I
must be added to that, so that the total effective spring constanmg web to become longer relative to the other edge, by an amount

1 1 1 b€ -y, whereb is the width of the web and is the length under
ke ke + k. (15)  consideration. A change in length implies a change in the out-of-

eff Tair - Tmat plane amplitudeZ, as derived in Eq(11) above:

In the vicinity of any particular operation point, the total extension )

due to an additional increment of tension is composed of both an E: 7T_Z d_Z

air-cushion-geometry component and an elastic-stretching compo- dy  2¢ dy

nent. The fraction of the additional extension due toed ma-

terial’s elastic stretchingé, is dz _2¢ ds 20 | 22)

1/kmat I(air dy WZZ dy WZZ Yo

stretch-ratio: &£

= 16
1 keff I(mat+ kair ( )

and its complementl—¢) is the fraction due to the air-cushion

showing the tilting of the maximum amplitude resulting from
the apparent lateral bending;,. Combining this with thelT—Z
relationship of Eq(8), we find that the tension profile®T/dy is

effects: a function of the nominal tildz/dy.
1k, k
(1-§)= 7= 17) , — w272 dT
l/keff kmat+ I(air Yair—= ¢ 2d.7: d_y
If the air-bar characteristics are not available, these extensional 252[Tapp—(;) d_Z}
spring constants can be obtained experimentally. Kfgcan be
measured by pulling on the end of the stationary web when the air b3 dT [b3/ ¢ \2 ¢\2dF
is turned off, and observing the displacement. g can be Moment= 1 d_y:[g(ﬁ) [ app—(;) EH»yair

obtained the same way, but while the air is on, gratttermined (23)
from Eq. (16). Thenk,, can be computed by solving for it in the

Eg. (15 and the effective air-cushion constar —dF/dZ of the  so that the lateral bending moment is governed by the tilt over the
air-support bars backed out from Ed.3). air-bars.
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Lateral Forces. The lateral curvature componeyf;, due to 92

the geometric effects of the web undulating over and under air- Y+ 210 ey’ —bTapy"+ —zEeﬁI(y”ng)

support bars has been described in an earlier pgfeand results IxX

in Eq. (22) which shows the relationship betwegt), and tilting =BT,y (Y —y"

of the maximum amplitud&. Along the length of the web, the tilt apptto Jar

of zis =bTappYo—bTapd1—&)Y"
(92 dZ H X 2€2 H X " \7 i " {92 " " "
E: d_ysm T :Esm 7 *Yair- (24) Y+ 2080 yery _bTapp'g'y +§Eeﬁl(y _Yo)szapp'Yo

(29)

Combining this with the pressure obtained in E2), the lateral . o
component of the pressure force on the sinusoidal web is, on l:].fméhe camber is constant along the length of the web, this simpli-
average, les to

F b wY+ 20 yery’ — bTapp' Ey'+ Eefflyw = bTapng (30)
y

¢ 9z ¢t oax 202 |mw ,
AR de: 7 PS'“T'TZS"' a “Yair dX  so that our governing equation has acquired a constant lateral
0 0 . force-per-unit-lengtf,=b T, acting towards the concave side
=bTapp Vair - (25) of the web camber. The equilibrium equation is

This establishes that the air supports produce a lateral force, pro- Eerll Y —bTapp £y =bTop¥o- 31
portional to that portion of the total lateral curvatyféwhich is  Because of the reduced effective beam stiffrigg and the con-

due to geometric effecty;, = (1— &) Yiota- siderable length of most air-flotation ovens, the effect of any lat-
eral loadf, is considerable.

If we normalize the dimensionsandy by dividing them by the
span-lengtiL, the dimensionless form of the equilibrium equation

yields the additional independent parameter

appY oL/ Eeql . (32)

Continuum P.D.E.

Straight Webs. Introducing this lateral forcd=,=—bT-y"

. o : . . camber-parameter: [I;2bT,
into the partial differential equation for purely lateral motion we

obtain for the total deflectiog Boundary Conditions. At the entry to the span, the displace-
. ., ) menty x—) and the slopg(’xzo) are given; we establish the origin
pY+2p0y" =bTapp Y+ Eely and alignment of the coordinates to make both of them zero:
- _ziapp' z’:ir oy Yx=0=0 (33)
app y Y(x=0)=0-
Y +2uvy’ —bTapy &y +Eely =0 (26) In practice, the exit roller will be guided to maintain the exit

. - displacement at
observing that the lateral force from tilting tends to cancel the

straightening effect of tension, leaving only the fractiéof the Yix=0)=0 (34)

hoped-for benefit. Note that this cancellation is independent of tBe . ”_ .
form of the functionF, whether it is linear, or hyperbolic, or y slanting the roller within the plane of the web, so that there will

based on the ground-effect model. be an exit angle/(,_ = 0,. The fourth boundary condition is
For the equilibrium solution we can leave out the first twanore difficult, especially in the presence of web camber, as dis-
terms, which contain time derivatives, and rearrange the remafiussed by Ron Swansda].

ing terms to obtain the equilibrium equation If roller traction is good and moments are moderate, equilib-
rium also requires that there must be a sufficient moment at the
Eerly —&bTapy =0 (27) exit to insure that the both sides of the web have the same length

as they feed through the roller, so that we have Swanson’s
whereEgl is the much-reduced value obtained in E20) above, moderate-spafull-width-traction boundary condition
Tappé(Tmat— nv?), and¢is the fraction of the web flexibility due .
to material elasticity. The apparent lateral stiffness is smalisf Yix=1=0 (35)
small; £ will have a larger value if the web flexibility due to the airy.< ~ondition would break down in the presence of large mo-
cushioning can be kept small by means of small amplitutiasd

: . o2 . .ments at the exit if the tension were not sufficient to maintain
high _shffne;g:i}'/_dz. However, the equatlon_ is basically stable_| raction across the entire width of the roller, and we would end up
Tapp IS positive (it goes unstable for negative values exceedin

Euler's buckling load With swanson's long-spapartial-slip boundary conditiory’(’X: L
If we normalize the dimensionsandy by dividing them by the = Yo indicating that the unequal-length edges would manage to

span-lengtiL, the dimensionless form of the equilibrium equatior$!iP through.

yields the independent parameter Equilibrium Solution.  In terms of the parameters from Egs.

2 2 ing Eq(32) i
stretch-parameter: Hgéngap‘J_zlEeﬂl (28) (28) and(32), our governing Eq(31) is
I

- (36)

. 11
to govern the solutions. y"— _Zéy,/:
L

Cambered Webs. When the web is cambered with an inher-
ent lateral curvatur¥’,, two terms in our equations are modified:If we apply Swanson'sull-width-tractionexit boundary condition
the beam stiffness term becomes zero when the web follows yt§_,,=0, so that both sides of the web feed through the roller
natural camber, and the lateral force is zero when the web is leveVenly, the solution is
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Fig. 3 Deflection shape, y/L versus x/L, from Eq. (39), the low-elasticity equilibrium solu-
tion for a cambered web, for  full-width-traction  at the exit, with unit camber parameter  (Eq.
(32))

y—C +Cl( )+Asm(\/_§ )+Bcos<\/H_§EX)+

I [x)\? While these are closed-form solutions, they are difficult to visual-
SILIT ize; neglecting material stretching leads to conservative solutions
4 (37) which are much simpler.

Low-Elasticity Equilibrium  Solution. If the elastic-
stretching parametdi ; is very small, the governing E¢36) can
be reduced to

where the coefficient&erived byMaple computer algebra incor-
porated inScientific WorkPlac&om http://www.mackichan.com/

are
Hf . \/H_ Hf \/H_ . \/H_ y////: E (38)
_2_1'[§S|n e H_g( ¢—sinylIl,) Eh
° \/H_gcos\/H_g— sin \/H_g If we apply Swanson'ull-width-traction exit boundary condition
Yx-1)=0, so that both sides of the web feed through the roller
cos\/_ (cos\/_ 1) evenly, the solution is
C1=2\/_ f\/_ y 1(x\2 5 (x\3 1/[x\*
\/_gcos\/_g—sm\/ﬁg E:Hf 0 "asle 24l (39)
cos\/_ (1 cos\/_) with an exit guiding angle
-2 -1
rgcosrg—sm R o)
sm sin and the lateral deflection profile shown in Fig. 3. The maximum
. \/_ ( \/_ \/_ excursion ofy,,,/L=0.005421; occurs atx/L=58%.
N \/_§COS\/_§_S|n\/_§ ' On the other hand, if we apply Swansorpartial-slip exit

boundary conditiory(y_,~Yg, so that the moment at the exit
On the other hand, if we apply Swansorpartial-slip exit roller is negligible, the solution is

boundary conditions/(,_,~Y¢, so that the moment at the exit

roller is negligible, the solution coefficients change to y_[1/x)? 5/x 3+i x| byl L(X 2
_ L flie\L) 48\L) " 24\L ool 4l\L
I . I \/H_g— sm\/H_g
L sin T+ | L — o [ 2 1/x)3
c _2H§ 1T, \/H_g + AT (41)
0 VI cosyII —sin \/H_gL
which gives us an exit guiding angle
cos\/_ 1
cos\/_+ YoL )( ) / 1., 1
C 72\/_ H§ \H§ eexzy(x:L) 4Y L 48H (42)
=
- Im.L . . . .
RCOSR sin \/_5 Evidently, the tension/stiffness ratio
cos /_+ YIL- _) - COS\/_ tension/beam-parameter:I1y, =11 /YL =bT )2/ Eegl

_ M I, (43)
\/_gcos\/H_( sinyITL determines the relative effect that any partial slip can have on the

nature of the solution. When the valuelig,,= 8, the deflection
N sin \/ \/_ profile acquires an S-shape, the maximum amplitude is reduced,
5'” \/_+ Yol — H_ H and the exit angle reversed, as shown by the dotted line in Fig. 4,

B= ¢ . indicating that gpartial-slip condition at the exit can be beneficial.
VIT; cosyTT,—sin {TTL However, for smaller values df,, partial-slip can reduce lat-
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Fig. 4 Deflection shape from Eq. (41), the low-elasticity equilibrium solution for a cambered
web, for partial-slip at the exit roller (dotted line) for a high value of 8 for the tension /beam-
parameter (Eg. (43)), compared with full-width-traction at the exit (solid line )

eral control: the dotted line in the Fig. 5 shows the lateral excuwve see that the effect of air-bar tilt is similar to the effect of the
sions with partial slippage whed,,,=3.7; it shows thapartial- camber on moments. A tilte with the proper sign can produce

slip can be detrimental wheH,,,<3.7 moments which assist in keeping the web straight.
Let us explore what this means for an inelastic, uncambered
Lateral Control (straighy web, for whichy”=y7,: The lateral deflections will

One of the suggestions for control of the curvature within af¢nd towards

air-flotation oven is to tilt every other air-bar—either the top set of 202

bars, or else the bottom set of bars, or else both sets in opposite —= yrrEa|=0

directions—in order to introduce a compensating curvature. How- Tz

ever, we have noted that the lateral force due to the primary effect 25

of normal pressure forces on the web depends only on the tilt of Vi=Fa e (45)

the web relative to our global co-ordinate system, not the tilt of 2¢

the bars. On the other hand, we see that the web material’s tensi ot T i ; ;
profile depends on the flying height ¢ z,,). Therefore, if there Sgﬁﬂng us a quantitative indication of the nominal magnitude of

' . L an, steering effects from air-bar tilts. For the small valueZbf that
is a significant contribution of web elasticity to the curvature, WEe desire for robustness only small control effegté are pos-
CaEe?Cuhsl?(\)/gksgtn':r?ecggstreo\l/v?])é:Ieltlgllgtr?g-t%?)iir-bars are tilted by ibtéle. Conversely, if other considerations lead us to large web-
angle =« radians, and all the bottom air-bars are tilted by the plitudes, tilt control on some or all bars might be promising.

same amount in theppositedirection, for a relative angle of .

+2a. (The same result can be achieved by tilting only the top éronclusion

only the bottom air-bars by®) The lateral forces on the web are . . . .

unaffected, because they depend only on the tilt of the web itself;l' T_he main effect Qf the sinusoidal shape .Of th_e web in an

but the tension profile of the web depends on the relative tilt of ~ 2\'-flotation oven is to reduce lateral bending stiffness. This

web and air-bar, and therefore the moments in the web change. redu.ct|on |s.d|rect|y .proport|onal to the reduct|or) of the ex-
' tensional stiffness, insofar as the same “effective Young’s

Revising Eq.(23) accordingly, modulus” enters into both MD extension and lateral bend-

¢\2dF ing. This makes extensional tests useful for judging lateral

b3 2 an |\ 2| gz rigidity. ' ' _ _ )

Moment= | ——-yg*a|| ———— (44) 2. The same measures which raise extensional stiffness will
12| 7?7 z improve lateral rigidity:

a. Choice of air-bars: bars which have been identified in our

past experiments as having good flying-height “stiffness”
] will also improve extensional and lateral rigidity.
0.004 b. Tension: increased tension will increase the flying-height
] “stiffness” as well as reduce sinusoidal amplitude.
c. Air pressure, if it is matched by increased tension to main-
0.0027 tain low flying height.

d. Air-bar engagement: less engagement means a flatter web,

O — — ———— with a moderate improvement in stiffness.

0 ’
0.2 . 04 x 06 08 ! These four measures can be useful for controlling lateral-
-0.002- J excursion troubles in ovens.
] T J 3. The lateral forces generated by the tilting of the web oppose
-0.0041 T ’ the straightening effect of tension, indicating that air support

.l L ’ is inherently destabilizing with respect to lateral position. In
the broader field of fluid/structure interactions, this is in the
category of divergent respongeather than the category of

Fig. 5 Deflection shape from Eq. (41), the low-elasticity equi- ; .
g P d. (41 ty €4 oscillatory response like web flutier

librium solution for a cambered web, for partial-slip at the exit

roller (dotted line) for a low value of 3.7 for the tension /beam- 4. A remaining effect of te_nsion is to increase the ”ke”hOOd_ of
parameter (Eq. (43)), compared with full-width-traction at the good traction at the exit roller, and therefore a greater like-
exit (solid line ) lihood that the moderate-spdull-width-traction boundary
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conditions apply, rather thapartial-slip. As a result, in-
creased tension can be counter-productive for straightening
the web. The criterion for whether partial slip at the exit
roller increases or decreases maximum lateral excursion is a
critical value of the tension/beam parameter, &®).

web mass per unit area; g, (32.174 lbm-ft/Ibf-set

w =
or 1 kg-m/N-$)
= fraction of total deflection due to elastic material
stretching, Eq(16)
I, = parameter for relative flexibility¢Il,,,, Eq. (28)

5. The main effect of air support is to reduce lateral moments and I1;
tension variation in the web, eliminating slack regions and

parameter for lateral force due to web camber,
YoLILy,, Eq.(32)

making longitudinal wrinkles less likely. IT,, = normalized ratio of app. tension to eff. beam stiff-
ness, Eq(43
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Finite Element Analysis of Pulsed
Laser Bending: The Effect of
X richard Zhan § - Mle|ting and Solidification

Xianfan Xu'

e-mail: xxu@ecn.purdue.edu This work developes a finite element model to compute thermal and thermomechanical
phenomena during pulsed laser induced melting and solidification. The essential elements

School of Mechanical Engineering, of the model are handling of stress and strain release during melting and their retrieval
Purdue University, during solidification, and the use of a second reference temperature, which is the melting

West Lafayete, IN 47907-1288 point of the target material for computing the thermal stress of the resolidified material.

This finite element model is used to simulate a pulsed laser bending process, during which
the curvature of a thin stainless steel plate is altered by laser pulses. The bending angle
and the distribution of stress and strain are obtained and compared with those when

melting does not occur. It is found that the bending angle increases continulously as the
laser energy is increased over the melting threshold va]i®l: 10.1115/1.1753268

1 Introduction stress and strain release and retrieval during melting and solidifi-
. I . cation. The stress release is usually approximated by specifying
Laser bending(or laser forming is a non-contact technlquethe temperature dependent material properties, for example, de-

capable of achieving very high precision. The schematic of a lascef'reasin Yound modulus and vield strenath sianificantly near the
bending process is iIIustrated in Fig. 1. A target is irradiated.byr,;-)'el inggpoint, [99—12]. On the )(/)ther hang, thegstrain rglease is
focused laser beam passing across the target surface. Heating ly being considered due to the difficulty involved in the nu-
cooling cause plastic deformation in the laser-heated area, ti?H rical simulation

change the curvature of the target permanently. The mechanism of,, this paper, a finite element model for simulating pulsed laser

laser bending has been explained by the thermo-elasto-plagjic,jing involving melting and solidification is developed using
theory,[1-3]. Three laser bending mechanisms, i.e., the tempef@e yncoupled thermal and thermomechanical theory. It is as-
ture gradient mechanism, the buckling mechanism, and the upsgfimed that the pulsed laser beam is uniform across the width of
ting mechanism have been discussed in the literafdi®]. For e specimerithe x-direction in Fig. 2. Thus, a two-dimensional
the temperature gradient mechanism, a sharp temperature gradiggfmal-stress model can be applied, which greatly reduces the
is generated by laser irradiation and the residual compressi@mputational time. In order to release and retrieve the stress and
strain causes permanent bending deformation toward the directigmin during melting and solidification, the element removal and
of the incoming laser beam. Most of the pulsed laser bendiRgactivation method is applied to each melted element. In addi-
processes are attributed to the temperature gradient mechanigm, in order to compute the stress of the solidified element cor-
since the short pulse heating duration induces a very sharp teictly, a second reference temperature for the thermal stress cal-
perature gradient near the target surface. culation is used. The bending angle, residual stress, and residual
Using a pulsed laser for bending is of particular interest in thetrain are obtained and compared with the results of pulsed laser
micro-electronics industry, where high precision bending, curvéending without melting.
ture adjustment, and alignment are often required. Chen gélal.
achieved bending precision on the order of sub-microradian . .
stainless steel and ceramics targets, which is higher than any other Simulation Procedure
bending techniques. The relations between the bending angle anth order to calculate laser bending, a thermal analysis and a
laser processing parameters were studied with the use of a twtress and strain analysis are needed, which are considered as
dimensional finite element methofi7]. In that study, the laser uncoupled since the heat dissipation due to plastic deformation is
energy was controlled so that no melting and solidification hapegligible compared with the heat provided by laser irradiation. In
pened during the bending process. However, in some laser befd-uncoupled thermomechanical model, a transient temperature
ing processes where larger bending angles are needed, the I§gkt is obtained first in the thermal analysis, and is then used as a
energy used could be high enough to cause melfiig, thermal loading in the subsequent stress and strain analysis to
The finite element method is a general and powerful tool f@btain Fhe transient stress, strain, and displacement distriputions.
investigating the complex thermal and thermomechanical probbe finite element code, ABAQUEBHKS, Inc., Pawtucket, Rlis
lems involved in laser bending9—12. When an unconstrained Used. As shown in Fig. 2, a dense mesh is generated around the
material melts, its stress and strain will be completely releasd@Ser path and then stretched away in the length and thickness
and then begin to retrieve when solidification starts. In this rélirections(they andz-directions. The domain size and laser pa-

spect, the main challenge of simulations is the handling of tf@meters used in the simulations are given in Table 1. The same
mesh is used for both the thermal and stress analyses. A total of
"5 whom correspondence should be addressed. 1200 elements are used in the mesh. Mesh tests are conducted by
Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY oF  iNcreasing the number of elements until the calculation result is
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  independent of the mesh density.
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 29,
2001; final revision, June 30, 2003. Associate Editor: B. M. Moran. Discussion on 2.1 Thermal Analysis. The thermal analysis is based on

the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Joumah‘ﬁlving the two-dimensional heat conduction equation.
Applied Mechanics, Department of Mechanical and Environmental Engineering Uni- '

versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be oT .
accepted until four months after final publication of the paper itself in the ASME pE —=V-(kVT)+Qyp 1)
JOURNAL OF APPLIED MECHANICS. ot
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Qap=(1-Ryp)alg(t)e ¥ "We a2 @)
whereR; is the optical reflectivity measured to be 0.66 for the
stainless steel specimensis the absorption coefficient given by
a=4mk/N. The imaginary part of the refractive indexof stain-

X less steel 301 at the laser wavelength 1.p64 is unknown, and
Bending angle ﬁ’ 4
z

Clamped end Focused laser beam

Scanning line k=4.5 of iron is used. The initial condition is that the whole

specimen is at the room temperaty890 K). Since the left and
right boundaries as well as the bottom surface are far away from
the laser irradiated area, the boundary conditions at these bound-
Fig. 1 Schematic of the laser bending process aries are prescribed as the room temperature. Convection and ra-
diation with the surrounding are neglected.

Analyses are carried out with the laser pulse energy of 250
wherek is the thermal conductivityp is the density of the stain- 270 uJ, 280uJ, and 300uJ, respectively. The peak temperature
less steelf is the derivative of the enthalpy with respect to temobtained by a 27QuJ pulse is 1703 K, higher than the liquidus
perature, an@,, is the volumetric heat source term resulted fronjeMperatureT; (1693 K. For comparison, thermal analyses of

irradiation of a laser pulse. The temperature-dependent properfidi§€ cases without melting are also performed; the laser pulse
of stainless steel 30113], are used in the calculation. energies are 20@J, 230.J, and 250uJ, respectively. The peak

The parametet is equal to the specific heat, in solid and temperature obtained by a 20 pulse is 1649 K, lower than the
liquid regions. When an impure metal, like stainless steel, folidus temperaturg; (1673 K).
heated from a solid state, it begins to melt at the solidus tempera; 2 Stress and Strain Analyses. In the stress and strain
ture Ts and melts completely at the liquidus temperatlife In  gnalysis, the material is assumed to be linearly elastic-perfectly
the mushy zone, i.e., the region where the temperature is betwegsstic. The Von Mises yield criterion is used to model the onset

Target

TsandT,, ¢ is defined by of plasticity. The left edge is completely constrained, and all other
L boundaries are force-free. Eight-node biquadratic plane-strain el-

C=cp+ S~ (2) ements are employed.
I s As in the thermal analysis, the temperature dependent material

wherelL is the latent heat. Values df,, T,, andL of stainless properties are used13]. Poisson’s ratio of stainless steel AlSI
steel 301 are listed in Table 213]. By usingC, the effective 304,[14], is used. Considering the incompressibility in the liquid
specific heat, the phase change problem can be solved withiph@se, the Poisson ratio of 0.4999 is used when the temperature is
single domain. Solid and liquid material are treated as one cdtgher thanTs. The strain rate enhancement effect is neglected
tinuous region and the phase boundary does not need to be cafiice temperature dependent data are unavailable. Sensitivity of
lated explicitly,[10]. unknown material properties on the computational results has

The laser intensity is uniform in the-direction and has a been discussed by Chen et [a].

Gaussian distribution in theg-direction, expressed as
I(y,H)=I (t)e_gyz/wz 3) 2.3 The Method of Element RemO\_/aI and Rga_c_tiva_tion
s\ 0 In order to model the phenomena of melting and solidification, the
wherel(t) is the time-dependent laser intensity at the center efement removal and reactivation meth¢d5], is applied. An
the laser beam and is the laser beam width at the target surfaceslement will be excluded from the stress and strain analysis when
The temporal profile of the laser intensity is treated as increasiitg temperature is higher thafg, i.e., the element is removed
linearly from zero to the maximum at 60 ns, then decreasing lifrom the domain after being melted and its stress and strain are
early to zero at the end of the pulse at 120 ns. Therefore, theeased to zero. During cooling, the removed elements are reac-
volumetric heat sourc®,;, in Eq. (1) can be expressed as tivated in the calculation when their temperatures are lower than
T, and the stress and strain start to retrieve.
For the elements starting to solidify, the initial temperature for
o the thermal stress calculatiohy is replaced with a new initial
y temperature equal to the temperature at the moment when it is
reactivated, i.e.T¢. This procedure is carried out for each ele-
ment experiencing melting and solidification with the aid of the
temperature history data obtained from the thermal analysis.
The reason for using a new initial temperature for a reactivated
element is explained as follows. As mentioned before, the thermal
stain of an unconstrained element is totally released after it melts.

Fig. 2 Computational mesh During solidification, the thermal strain will change gradually

o only if T is used as the initial temperature. Otherwise, if the room

Table 1 Domain size and pulsed laser parameters temperatureT; is still used as the initial temperature, the thermal
Specimen lengthy) 600 zm strain \_N|II experience a sharp jump from zero to a high value,
Specimen thicknes&) 100 um which is physically incorrect. Therefore, two initial temperatures
Laser wavelength 1.064m should be used for each element involving melting and solidifica-

Laser pulse full width 120 ns tion.

Laser pulse energy 20030 ot _
Laser fine width 30um The element removal and reactivation would not affect the ther

Laser line length 1.3 mm mal analysis since the thermal and the stress analysis are not
coupled, and the thermal analysis is performed before the stress
analysis. The forces in the element reaching the melting point are
Table 2 Thermal properties of stainless steel 301 reduced to zero gradually before the element is removed, which is

- determined by the temperature-dependent stress-strain relations.
Eiglb?gjst?é“nﬂ)sg?;%ii %gggﬁ Therefore, there is no sudden change of stress in elements in-
Latent heatL 265 J/g volved in phase change. On the other hand, when the element is
reactivated with zero stress, it exerts no nodal forces on the sur-
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Fig. 4 Temperature distributions at different moments (E

Fig. 3 Comparison between the results of FEA and an exact

solution for (a) solidification, (b) melting =270 nJ) (a) along the y-direction on the top surface, (b) along

the z-direction (at y=0)

rounding elements. Thus the element removal and reactivation do . .
solid state at the melting point. A+ 0, the surface tempera-

not have any adverse effect on the thermal and stress calculati g .
t’ée is increased to and kept at a constant temperature higher than

Based on the above description, the stress and strain for { i it Adai hb he finite el
elements involved in phase change are computed by the methodtt Melting point. Again, exact match between the finite element
sult and the analytical solution is obtained, as shown in Fig.

element removal and reactivation and the use of a new initi
temperature aff to calculate the stress/strain of the solidifie ' .
elements. During the calculation, element removal and reactiva-1 "¢ @Pove calculations are the only ones relevant to the prob-
tion are tracked for each element since each melted element
gins to melt and solidify at different times. Hence, the comput
tion is intensive even for the two-dimensional problem consider

in this work.

n studied here which have analytical solutions. There are no
nalytical solutions for thermomechanical problems with solid/
iq‘uid phase change since these problems are highly nonlinear.
e rest of this work is focused computing the laser bending
problem involving melting and solidification. We first present de-

. . tailed temperature and residual stress distributions induced by a

3 Results and Discussion laser pulse at a fixed ener¢®70 wJ). Then, the laser pulse energy
Calculations are first conducted to verify the finite elemer varied, and bending with and without melting is compared in
analysis of melting and solidification. Results of finite elemerterms of the thermal strain, plastic strain, total strain, and stress.
analysis are compared with exact solutions of solidification arithe dependence of the bending angle on the laser energy is also

melting problems given by Carslaw and Jae[]. For the so- presented.

lidification case, the target is initially at the liquid state with a

uniform temperature. At=0, the temperature at the surface (3.1 Results of Laser Bending With a Pulse Energy of 270
=0) is changed and held at a temperature lower than the meltijpd. The transient temperature distribution in the target in first
point. Freezing thus starts and proceeds into the material. Teedculated. Figure 4 shows temperature distributions alongthe
position of the solid-liquid interface can be calculated with and zdirections at different times. It can be seen that the maxi-
known material properties, and its expression is given in the insenum temperatureT .., IS oObtained at the pulse center and
of Fig. 3(a). Figure 3a) shows the comparison of the results. Ireaches its peak value of 1703 K at 82.9 ns, and then drops slowly
can be seen that the result of the finite element analysis matche446 K at 3.6us. It can be estimated that the heat affected zone
exactly with the analytical solution. Similarly, results of the melt{HAZ) is around 40um wide (the laser beam is 3@m wide).

ing case are also compared. In this case, the target is initiallyFigure 4b) is the temperature distribution along tkealirection,
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= i 4
~,. 800 -
" 600 N N (250 wJ). With the pulse laser energy of 276J, the target begins
b4 L . to melt at about 70 ns and is completely solidified after 200 ns.
o 400 - — Results of the center element on the top surface are compared.
ﬁ 5 b Figure 7 shows histories of the thermal strain. For laser bending
= 200 - - without melting, the thermal strain first increases as the tempera-
] 0 i ] ture rises due to laser irradiation, and reaches a maximum value of
=4 B i 0.0228 at 82.03 ns. It then reduces to zero as the target cools to the
8 2200 — room temperature. However, for bending involving melting, there
n L : are three periods in the thermal strain development: heating, melt-
400 L b 1 1 ing and solidification, and cooling. The thermal strain reaches the
0 5 10 20 peak value of 0.0232 at 69.52 ns. At this time, the corresponding
z (um) average temperature of the element is 1673 K, which equals the

solidus temperature. The element is excluded from the stress and
strain analyses when it melts, which lasts for more than 28 ns.
When it starts to solidify at 97.52 ns, the initial temperature of the
element is replaced by the solidus temperaflye and then the
thermal strain starts from zero to retrieve a negative value, which
decreases continuously and reaches a residual value€df229.

o The final thermal strain is very different from that of the nonmelt-
beginning from the upper surface of the target. It can be seen thd case because of the use of a second initial temperature.

the temperature gradient during heating period is higher than 500r ansyerse plastic strains with and without melting are shown

K/'“.m' _ ) in Fig. 8. The compressive plastic strains are created during the
Distributions of the transverse residual stregs along they

andz-directions are shown in Fig. 5. It can be seen from Fig) 5

thatoy, is tensile, and has a value larger than 1.0 GPa. The stress-

affected zone in thg-direction is about 3um. In thez-direction, 0.03 —rrry T T T T T
oyy is more than 1.0 GPa within 1.am from the surface. It C
becomes compressive at a depth of Arb from the surface. The 0.02 F
maximum value of the compressive stress is about 250 MRa a~ 2
=2.5um, and it gradually reduces to zero in the deeper region

Figure 6 shows the deformation distribution along the
y-direction. It can be seen that the permanent bending deformati
is in the direction toward the incoming laser beam and the defle
tion is 42 nm at the free edgg € 300.m). There is a ‘A” shape
surface deformation aroung=0 um, the center of the laser
beam. This is produced by thermal expansion along the negati
zdirection because the surface is not constrained.

Detailed information about the thermal strain, the total strair
and the stress for the elements involved in melting and solidific:
tion and computed using the element removal and retriev.
method is presented next, together with the case without meltir
for comparing their values.

Fig. 5 Residual stress o, distributions (E=270 uJ) (a) along
the y-direction on the top surface, (b) along the Zz-direction
(at y=0)
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3.2 Comparison Between Laser Bending With and With-
out Melting. Strain and stress histories during laser bendingig. 7 Transient thermal strain at the center point on the top
with melting (270 wJ) are compared with those without meltingsurface
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Fig. 8 Transient plastic strain at the center point on the top

surface

Fig. 10 Transient transverse stress

the top surface

o, at the center point on

heating period since the thermal expansion of the heated area-i3.0015 for bending without melting an€0.0017 for bending
constrained by the surrounding cooler materials. In the subsequeith melting (not shown in the figure In both cases, the final
cooling period, the plastic strain decreases gradually, and is ppending angle is positive, meaning in the direction toward the
tially canceled with a residual value 6f0.0047 for the case with- |aser beam.
out melting. For bending involving melting, the compressive plas- Unlike strain, the overall trend of the stress development is not
tic strain is created during heating and it is released to zero duringich affected by melting and solidification. As shown in Fig. 10,
melting. This represents a significant difference between the twite development of the transverse stress follows a similar trend
cases. Physically, the melted material can not support any straimnd a tensile residual stress of about 0.97 GPa is obtained in both
due to the free surface while the material not melted can supportases. This is because the yield stress and the Young’s modulus
relatively large strain because of the surrounding cooler materiate reduced significantly at high temperature. Fort the case with-
which is exactly what modeled here and shown in the resulisut melting, the stress is released to almost zero near the melting
After the melted element begins solidified, a tensile plastic strapoint, while the stress is reduced to zero for the case with melting.
develops, and a residual plastic strain of 0.0185 is obtained. Figure 11 shows the relation between the bending angle and the
The history of the total transverse strai, up to 2000 ns is pulse energy. Bending angle increases almost linearly with the
shown in Fig. 9. Despite the differences in the thermal and plasjitilse energy. The dash line is the fitted line for laser bending
strains, it can be seen that the total strains in both cases haweithout melting and is extracted to compare with the data with
similar trend. The total strain increases and then decreases, anghelting. There is no discontinuity or large change in the relation
about 100 ns it increases rapidly and reaches the maximum vahetween the bending angle and the laser energy when the laser
at around 400 ns as the target bends away from the laser beanergy is increased across the melting threshold. This is in con-
After that, it decreases slowly and the residual value is abosittent with the results of total strain calculations since bending is
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Fig. 9 Transient total strain
surface
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Fig. 11 Bending angle as a function of laser pulse energy
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directly related to the total residual strain. As discussed previ- & = position of solid-liquid interface
ously, no large change of the total strain is found when the laser- €, = total strain along thg-direction
energy is increased across the melting threshold. e?y = plastic strain along thg-direction
h
Eyy

4 C lUSi = thermal strain along thg-direction
onclusion x = imaginary part of the refractive index
A two-dimensional finite element model for calculating pulsed N = wavelength
laser bending with melting and solidification is developed. The p = density
element removal and reactivation method is applied to eacho,, = stress along thg-direction
melted element to account for the stress and strain release in the
melted material. A second initial temperature is necessary for t%ief
. ; . erences
reactivated elements in order to compute the stress and strain de- o )
velopment correctly. The bending angle and the residual stress ard NambavCY-’ 1986, “'-asf' ';Ormggs'” Spaceliiternational Conferggce o
strain distribution of stainless steel irradiate by a laser puISe argy eviy: k. 108y “Laser Line Hoatng. 3. S Progup. 250 248,
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residual strain, stress, and the bending ar]g|e is found when th@] Vollertsen, F., 1994, “Mechanisms and Models for Laser Formirigaser

| .. d th lti th hold Assisted Net Shape Engineering, Proc. of the LANE Geiger et al., eds.,
aser energy IS Increasea across the melting tnresnold. Meisenbach, Bamburg, Germarly, pp. 345—360.

[5] Geiger, M., and Vollertsen, F., 1993, “The Mechanisms of Laser Forming,”
Annals of the CIRP42, pp. 301-304.
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1 Introduction oW 20

_— I . . L =C —+e — la
In designing with piezoelectric materials, it is important to take 7= CadY) oot eusly) 7 (12)

into consideration imperfections, such as cracks, that are often

pre-existing or are generated by external loads during the service _ ‘9_W+ ﬁ 1b
life. The fracture of piezoelectric materials have received much 7yz= Cady) ay e1s(y) ay"’ (16)
attention. On the other hand, the development of functionally

graded material§FGMs) has demonstrated that they have the po- D.— aw ¢ 1
tential to reduce the stress concentration and increase the fracture x=€15(y) ox € u(y) X’ (10)

toughness. Consequently, the concept of FGMs can be extended to
the piezoelectric materials to improve its reliability. The fracture
of functionally graded piezoelectric materials has been studied for
the thermal loadd,1], and the antiplane mechanical and in-plane
electric loads[2]. where 044()(), e5(y), and e q14(y) are thg shear modulus, the
Recently, Li and Weng2] studied a mode Il fracture problem plezoelep_trlc_: constant, and the dielectric constant, respectively.
for a functionally graded piezoelectric materiéGPM). The The equilibrium equations are
crack is located at the center of the strip. The material properties or or aD. oD
vary in the direction perpendicular to the crack, and they are also Xz, Yz Xy Y
symmetric with respect to the cracked plane. Two important re- ax -y ax Y

sults were reported1) The crack tip singularity in a FGPM is of |, order to overcome the complexity of mathematics involved, we

the same type as in the homogeneous piezoelectric mate@als; focys on a special class of FGPMs in which the variations of the
The stress and the electric displacement intensity factors decreggerties are in the same proportion. Therefore, we assume

with the increasing material gradient. In this paper, we present a

more general solution to the mode Il crack problem for a FGPM  Cay(Y)=Cof(y), es(y)=¢eof(y), eu(y)=¢eof(y). (3)
strip shown in Fig. 1. A class of functional forms for which th
equilibrium equations have analytical solutions is studied. T

d¢

IW
Dy=e(y) ——— e1u(y) =, (1d)
Y ay ay

0. @)

Jom Eqgs.(1)—(3), we obtain

influence of crack locatioffi.e., h; /h) on the stress and electric Pw Pw Py P oW Y
displacement intensity factors is considered. The effect of interace,| — + — | +eo| — + — | +Cop(y) == +€op(y) ——
tion of more than one crack on SIFs is investigated by considering \ dX ady 2 Iy %y %y

two collinear cracks in the strip. Different from the conclusion
made in[2], we find that, for different material property distribu-
tions, the magnitudes of the stress and electric displacement in-(

=0, (4a)

Pw Pw Py PP
—+—]—e +
ax?  ay?

tensity factors can increase or decrease with material gradient. g LT
x> ay?
=0, (4b)

ow o
+eop(y) Yl €op(y) £
2 Formulation of the Crack Problem

Consider the crack geometry shown in Fig. 1. Assume that the
medium is loaded away from the crack region. The problem in tiyghere
absence of cracks has been solved, and the only applied are the 1 df(y)
antiplane shear stresses and the in-plane electric displacements on p(y)=————. (5)
the crack surfaces. fly) dy
Under antiplane deformation, the constitutive equations are | ¢t the solution of(4) be given by

1 )
w(x,y)zzf Fi(y,s)e 'S*ds, (6a)

—®

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septem-
ber 19, 2002; final revision, Oct. 13, 2003. Associate Editor: H. Gao. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication of the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS. From Eqgs.(4) and (6) it follows that

0

€ 1 ,
¢(X,y):E—OW(x,y)+EJ Fo(y,s)e Sds.  (6b)

—®
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Fig. 1 Geometry of the crack problem

d’Fy
dy?

&’F, dF,
— +p(y) ———s%F,=0.
(1)

If we replace the unknown functioR; by H; andF, by H, so
that

Fi(y,8)=Ha(y,)[f(y)] "2

dF, 5
+p(y) d_y_s F,=0,

Fa(y,8)=H,(y,s)[f(y)] %,
®)

Eq. (7) would then become

d°H, 1

dy? 4

d
p2+2£+4s2

Hl:O,

d’H, 1 dp

_ Tl n2eo 2
a2 4(p +2dy+4s
We will now look for a particular class of functions for whi¢8)

H,=0. 9)

1 (= _
w(X.y)=zJ7 [fa(Y)Ai(s)+Tp(y)By(s)]e '®ds, y<O,
(209)
€ 1 (=
¢(x,y)=E—OW(x,y)+ fo ‘[fa(y)Cl(S)
+f,(y)Dy(s)]e "™ds, y<O, (2)
and
1 (= ,
W(x,y):Zﬁ [fa(Y)Ax(S)+Th(y)Bo(s)]e '®ds, y>0,
(21a)
€ 1 (=
¢(x,y)=E—OW(x,y)+ﬂﬁ [fa(y)Ca(s)
+fu(y)Dy(s)]e"Sds, y>0, (21b)

where A;(s), B1(s), Ci(s), Di(s), Ax(s), By(s), Cy(s) and
D,(s) are unknown constants, and

fa(y)=[f(y)]1" Y257, fo(y)=[f(y)] Y2 s, (22)

Now consider the boundary and continuity conditiésse Fig.
1). Suppose that under antiplane deformation the upper and lower
surfaces of the crack are contacted without friction. Hence, the
crack can be treated as an electrically permeable one and there is
no stress on its surfaces. This assumption is same as that. in

have analytical solutions. The simplest such classes of functiofg shall treat the crack problem by means of the superposition

are obtained by assuming that

dp
2 —_—
pc+2 dy 4¢,,
wheref is a constant. Three classes of functions satisfyi)
may thus be obtained as follo3]:

(10)

@ g0:B2;
p(y)=%28, f(y)=exp+28y), (11)
p(y)=2Bcoth By+45), f(y)=sini’(By+35), (12)
p(y)=2BtantBy+05), f(y)=cost(By+s), (13)

(b) €o=—p*
p(y)=2Bcot(By+05), f(y)=sir’(By+9), (14)
p(y)=-2BtanBy+4), f(y)=coS(By+4), (15)

(c) €,=0:

p(y)=2B/(By+1), f(y)=(By+1)? (16)
p(y)=0, f(y)=1, 17)

technique. That is we first solved the problem without any cracks
and then use the equal and opposite values of the stress as the
tractions on the crack surfaces. Then the continuity and boundary
conditions are as follows:

7% —h))=0, D,(x,—h)=0, xe(—,%), (23)
TyAX,h2)=0, Dy(X,h)=0, Xe(—%,), (24)
7%, +0)=7,/x,—0), Dy(x,+0)=D,(x,—0),

Xe (—»,2), (25)
d(X,+0)=d(X,—0), xe(—%,%0), (26)
w(x,+0)=w(x,—0), xe&(b,c), (27a)

TyAX, +0)=T7y(X,—0)=179(X), Xe(b,c). (270)

The seven homogeneous boundary conditions shown in Egs.
(23)—(26) may be used to eliminate seven of the eight unknowns,
Ai(s), Bi(s), Ci(s), Du(s), Ax(s), Ba(s), Cx(s), andDy(s).

The mixed boundary conditiorl®7) would then give a system of
dual integral equations to determine the remaining one function.

where B and & are arbitrary constants. Using the substitutionBy defining a new unknown

B——pB and 6—7/2— 6, the property distributior{15) can be re-
duced to(14). Further, Eq(17) describes a homogeneous material

strip.

3 The Solution

Under conditions(11)—(17), the fundamental solution to Egs.

(9) can be obtained in analytical forms:
Hi=A(s)exp(|s| yy) +B(s)exp(—[s| yy),
Ha=C(s)exp(|s|yy) + D(s)exp —[s|yy), (18)

where

y=V1+4€,/5°.
From Eqgs.(18), (8), and(6) it follows that

(19)
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IW(X,+0)—dw(x,—0)
X)=

X ' (28)

the problem may also be reduced to a singular integral equation in
g. In this case it is seen that E(7a) is equivalent to

c

g(x)=0 for x&(b,c), and jg(x)dx:o, (29)

b

and(27b) gives the desired integral equation.

By substituting now from Eqs(20) and (21) through the
Hook’s law into boundary condition§23) and (24), continuity
conditions(25) and (26), and by using Eq(28), A,(s), B(s),
C1(s), D4(s), Ax(s), By(s), Cy(s), andD,(s) may be deter-
mined in terms of the Fourier transforms @f Noting thatg is
zero forx ¢ (b,c), the following expressions are found:
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e ’ ’ _ gt ’ e
Ay(s)= fo(—h)[fa(0)f5(hy) —f5(0)F5(hy)] D1(S):*e_0031(5)v (31b)

[f5(0) = fa(0)I[f5(—ho)fa(hy) = fo(ha)fa(—hy)]

f 12 rc
LT f o0, (308) Cal9)=— 2 Ay(s), (319
S b €o
A(S)= fo(h2)[fA(0)fp(—hy) —f5(0)Fo(—hy)] Dz(s)=—352(s), 310
[f5(0)—=fL(0) ][ Fo(—hy)fi(hy) —Fi(ha) Fo(—hy)] <
irf 12 ¢ _ where
x&f g(t)es'at, (300) oo o
S b fa(y)=afa(y)ldy, foly)=afu(y)/dy. (32)
fi(—hy) Substituting from Eqgs(1) and (20) into the boundary condition
Bi(s)=—— Aq(s), (30c)  (27), we obtain
fo(—hy)
1 Cc
fi(h = =
By(s)— ?( 2) ALS), (300) 7TLg(t)K(x,t)dt To(X)/Cq, (33)
fp(hy)
and where
Ci(s)=— :—OOAl(s), (31a) K(x,t)= ;— f, k(s)est=Xds, (34)

fL(0)f (—hy)—f.(0)f.(—h f2(0)f{(hy,)—f.(0)f.(h
o) 0y LT QBN ~ H(O) T~ o)L (O)Ficha)— fy(O)facha ] )
SLT3(0)— FA(O) L Fi(—hy) Fa(hy)— fy(hp) To(—hy)]

Therefore, the integral kernél can be obtained by inserting the  f(0) 1 Jc 1

1 c
property distributiong11)—(17) into Egs.(22) and then into Eq. > mg(t)dH —J Ki(x,t)g(t)dt= 7o(x)/cq,
(35). In particular, if the material properties are described by Eq. T Jb ™ Jb

(17), the explicit form for the kernet can be obtained as follows: (40)

| sinh(shy)sinh(sh,) (36) where

S)=—————. P »
i )
sinh(sh) Ky(x,t)= —f A(s)@5t X ds= —f A(s)sins(t—x)]ds,

o . . . 2 . 0
For other property distribution;, is a very complicated function
of s. (41)

is a known bounded function.

4 The Singular Integral Equation

In order to determine the singular behavior(88), the behavior © Crack Tip Field Intensity Factors
of the kernelk needs to be examined. For this, it is sufficient to The singular integral Eq40) contains a Cauchy-type kernel.
determine and separate those leading terms in the asymptotic @snsequently, the crack tip behavior can be characterized by a
pansion ofk as|s|— that would lead to unbounded integralsstandard square-root singularity. This means that the forms of the
From the expression d¢fgiven in(35) it can be shown that in the singular stress and electric fields at the crack tips in a FGPM are
asymptotic expansions f¢s|—o the only terms that would give same as those in a homogeneous piezoelectric material. The solu-

unbounded integrals are tion of the singular integral Eq40) has the following form:
f(0) F(x
k(too):—sgr(s)T. (37) Q(X)=#: (42)
V(X=Dh)(c—x)

By adding and substituting the asymptotic value giver®9 to  \yhere F is a bounded function. After normalizing the interval
and fromk in (34), and by evaluating the integrals involving thep ¢) Eq. (40) may be solved numerically by using a Gaussian

leading term, we obtain quadrature formula. The mode Il stress intensity factor at, for
f0) 1 i [ example, the crack tig=b is defined by
[ is(t—x)
KOG=—" 1" 3 Lf\(s)é ds,  (38) ka(b)= lim \2(b—x)7,4(x.0). (43)
x—b—-0

where Observing that Eq(40) gives the stress componenf,(x,0) on

A(s)=Kk(s)+sgrn(s)f(0)/2. (39) thPT plane of the cra_ck faxe (b,c) as_well asx¢(b,c)_, substi-_

tuting from Eq.(42) into Eqg. (40) a simple asymptotic analysis

Thus, (33) may be modified as follows: would show that
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f(0) 1 1 1 1 (¢
h2 ?y T;j ﬁ‘Fm g(t)dt+ J KZ(X,t)g(t)dt
—5 —>x b
hy ! - b b c =7o(x)/Cq, (50)
where
Fig. 2 Two symmetrically located collinear cracks Ko(x,t) =K (%) — Ky(X, — ). (51)

The integral Eq(50) is again solved under the following single-
valuedness condition:

F(b) F(c) fc
V(e=b)(b—x) (c—b)(x—c)

+0O(V(b—x)(x—=c¢))]|.

Thus, from Eqgs(43) and (44) we obtain the stress intensity fac-

TyAX,0)= C4§0)

bg(><)d><=0. (52)

To solve Eq.(50), the length parameters in it are normalized
(44) according to

x=x(c—b)/2+(c+b)/2, t=t(c—b)/2+(c+b)/2. (53)

tors Thus, the integral Eq50) can be reduced to the following stan-
dard form:
C440) F(b) €44(0) F(c) f(0)1 (1] 1 —pb1 (!
ks(b)= —=, k(0)=— —, (5 1O 1 e s
2 a 2 \a > )T g VA 5 | Kexba(hdt

where a is the half-crack lengthi.e., a=(c—b)/2). Since the

crack is assumed to be electrically permeable. There is no electric — 7o(X)/Co, (54)
potential discontinuity across the crack and the electric figlis  where

finite at the crack tips. It can be shown from E@$) that the

elect.ric displacemeri(x,0) near the crack tip has the following X, =X+ 2(c+b) (55)
form: c—b

Dy(X,00=[€15(0)/C4q(0)]7(x,0), Xx—b—0 or x—c+0. The solution of(54) has the same form as E@2). It can also be

(46) expressed as
2_’her(_a|_fl’c‘)re,ltheE galedc_tri(:I displacztar_n(tant s_?O\st;aingtulfarity at th? crack © F(t) 2 “OATAD 56
ips. The electric displacement intensity fackgrat, for example, g(t)= —= ,
the crack tipx="b defined by Vi-t2 Ve-b = (12
— oYy whereT,, is the Chebyshev polynomial of the first kind. By sub-
ka(b) X_If[)n_o 2(b=x)Dy(x.0), (47 stituting from Eq.(56) into Eq.(54) and by using the well-known
orthogonality conditiorj4]:
can be obtained from
ks=[€15(0)/C44(0) ]k (48) ! fl ORI
. 4 15 44\ 3 1(t X) —1 2

Sincek; depends only omy(x) (see Eqs(40), (42), and(45)), the -
applied electric load would contribute nothing to the crack tip Up-1(x), n=1, [x]<1

fields. Further, we note that the piezoelectric coefficiejatand Sgr(x
the dielectric coefficiente 1, do not enter Eq(40). This means _) Y san ¥ x2—11" n=0 [x[>1

that the piezoelectric effect has no effect on the stress intensity Se—1 [x=sgrix) VX =17, - =1, (57)
factor.

0, n=0, [x[<1
we find
6 Collinear Cracks

f(O)
In formulating the problem, no conditions of symmetry with 2 AnUn- 1(r)+ 2 An \/_[ Vxl 1=x]"
respect tox=0 were assumed regarding to the crack geometry

and the external loady(x). Thus, the integral Eq40) derived in c—b 1< 1 T.(1) —

Section 4 is valid basically for any number of collinear cracks +— —2 A”J K (X,t) === dt = 70(X)/Cg,
defined byy=0, b;<x<c;, (j=1, ... n) along thex-axis with 2w -1 vi-t

the additional single-valuedness condition of the fo{29) for (58)

each crack, namel
Y whereU,,_, is the Chebyshev polynomial of the second kind. The

% _ . simplest method for solving the functional E&8) is truncating

L_ g;(x)ax=0, (j=1,...n). (49) the series and using an appropriate collocatiox {isee, for ex-
! ample,[5]). In this problem, the stress intensity factors can also be

The only change in the integral equation would be in replacing thgtained from Eq(45).
integral (,c) by the sum of the integrald;=(b;,c;) (i
=1,...n) corresponding to the collinear cracks. . .

As an example, we consider the case of two symmetricaIK/ Results and Discussions
located and symmetrically loaded collinear cra¢kgy. 2). That Since the applied electrical load does not influence the crack tip
is, we assume thab;=b, c;=c, b,=—c, c,=—b, 7,,(x,0) singularities, it is sufficient to consider a uniform shear loading
=7y(—x,0)=179(X), b<x<c. In this case, using the symmetryr,. Five kinds of property distributions, namelyf(y)
conditions, Eq(40) may be expressed as =exp(28y), f(y)=sint?(By+0.8814), f(y)=cosH(By), f(y)
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Fig. 3 Material properties distributions; Bh=15, curve 1: f Fig. 6 The effect of the crack location on the stress intensity
=sinh 2(By+0.8814), curve 2: f=exp(2By), curve 3: f=(By factors; a=0.75h, u=p, cosh?(By)
+1)2, curve 4: f=cosh ?(By), curve 5. f=sin?(By+ml2)

monotonously increase, it rather goes through a minimum before

=sir(By+712), and f(y)=(By+1)? are investigated. The b_ecoming u_n_bounde(Figs. 5and 8 F_rom the results shovyn in
shapes of these property distributions are displayed in Fig. 3 fot9S- 4-8, it is noted that the stress intensity factors can increase
Bh=1.5. These functions show a same value 1 at the crackéd9s: 4, 5, 7, and Bor decreas¢Fig. 6) with increasing param-
plane(i.e.,y=0 plane. eter 8. The influence ofB on k; becomes more significant when

The normalized values of the stress intensity factors for a sindfe€ crack approaches the centay{ h/2) of the strip. _
crack are given in Figs. 4—8 and Tables 1-6. The electric dis-SOme examples for the stress intensity factors are shown in
placement intensity factors can be obtained directly from(gg).  'ables 16 for different crack lengths. In these tables, again
Figures 4—8 show the effect of the crack locationth onkg ina =(C¢—b)/2 is the half-crack length. The crack is located sym-
uniformly loaded FGPM strip. In these figuras- (c—b)/2 is the Mmetrically; that is,h;=h,. As expected, in all cases as crack
half-crack length. For comparison, the valueskgffor a homo- 1€ngth approaches zero we hake- 7oya. For reference, Table 1
geneous medium3=0) are also displayed in each figure. As exIS0 shows the results for the corresponding homogeneous layer
pected, forh, /h—0, k; become unbounded. A somewhat unexdi-€-, for =0). _ , _
pected result is that in some cases, if the material nonhomogeneity@bulated in Table 3 are stress intensity factors agaifisfor
parameterg is relatively large, ah, /h decreases, does not the property distributiorf (y) =cost{(8y). From the results, it is

22 1 22 ¢
2 F 2 F
18 £ 18 F
k, r k,
SCERTE: wa 6t
r
14 14 F
1.2 L 1 i L 12 L 1 1 ! '
00 01 02 03 04 05 00 01 02 03 04 05
hith h/h

Fig. 7 The effect of the crack location on the stress intensity

Fig. 4 The effect of the crack location on the stress intensity
factors; a=0.75h, f=sin?(By+m/2) or f=cos?(By)

factors; a=0.75h, f=exp(28Y)

22 ¢ 22
2 F 2 F
18 | 18 F
wa g6k wle 16k
14 | 14 F
12 1 1 1 L1 12 ) ) N ,
00 01 02 03 04 05 00 01 02 03 04 05

hilh

Fig. 5 The effect of the crack location on the stress intensity
factors; a=0.75h, f=sinh?(By+0.8814)

Journal of Applied Mechanics

hith

Fig. 8 The effect of the crack location on the stress intensity
factors; a=0.75h, f=(By+1)?
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Table 1 Stress intensity factors for property distribution f Table 5 Stress intensity factors for property distribution f
=exp(28y); h,=h,=0.5h =sin2(By+m/2) or f=cos?(By); h;=h,=0.5h
ks/7oya ks/7pya

alh ph=0 ph==0.5 gh==*1 Bh=%+125 gh=*15 Bh=*175 a/h gh==*0.5ph=+1 gh==*1.25 gh==15 gh==+175 gh==*2
1.0 1.377 1.388 1.413 1.438 1.463 1.491 1.0 1.388 1.419 1.443 1.472 1.506 1.547
0.9 1.333 1.342 1.370 1.390 1.413 1439 0.9 1.342 1.372 1.394 1.421 1.453 1.490
0.8 1.288 1.296 1.322 1.340 1.361 1385 0.8 1.296 1.323 1.343 1.368 1.398 1.432
0.7 1.242 1.250 1.273 1.289 1.309 1331 07 1.250 1.274 1.293 1.315 1.342 1.374
0.6 1.195 1.202 1.223 1.238 1.255 1.275 0.6 1.202 1.224 1.241 1.261 1.285 1.313
0.5 1.149 1.155 1.173 1.186 1.201 1218 05 1.156 1.174 1.188 1.206 1.227 1.250
0.4 1.105 1.110 1.125 1.135 1.148 1.162 04 1.110 1.125 1.137 1.151 1.168 1.188
0.3 1.064 1.068 1.079 1.087 1.097 1.108 0.3 1.068 1.080 1.089 1.100 1.112 1.127
0.2 1.031 1.033 1.040 1.046 1.052 1.059 0.2 1.033 1.041 1.046 1.053 1.061 1.071
0.1 1.008 1.009 1.012 1.014 1.017 1.019 0.1 1.009 1.012 1.014 1.017 1.020 1.024
Table 2 Stress intensity factors for property distribution f Table 6 Stress intensity factors for property distribution f

=sinh 2(By+6,); hy=h,=0.5h, &, is such that sinh ;=1

=(By+1)?; h;=h,=0.5h

ksy/ 1@ ks/To\@
a/lh ph=%05 ph=*+1 ph=+125 ph=*15 ph=*175 a/h Bh==0.5ph=+1 gh=+1.25h=+15 gh=+1.75 gh—+2
1.0 1.408 1.496 1.559 1.631 1.709 1.0 1.398 1.459 1.504 1.558 1.619 1.683
0.9 1.361 1.444 1.504 1.572 1.645 0.9 1.352 1.409 1.451 1.501 1.558 1.618
0.8 1.314 1.390 1.444 1.507 1.573 0.8 1.305 1.357 1.396 1.442 1.494 1.549
0.7 1.265 1.334 1.384 1.440 1.501 0.7 1.258 1.306 1.341 1.383 1.431 1.481
0.6 1.217 1.279 1.323 1.374 1429 0.6 1.210 1.252 1.284 1.322 1.364 1.410
0.5 1.168 1.2 1.260 1.304 1352 05 1.162 1.198 1.226 1.258 1.294 1.334
0.4 1.120 1.164 1.195 1.231 1.271 0.4 1.115 1.145 1.168 1.194 1.224 1.257
0.3 1.076 1.109 1.133 1.160 1.190 0.3 1.072 1.095 1.112 1.132 1.155 1.180
0.2 1.038 1.059 1.075 1.093 1112 0.2 1.036 1.050 1.061 1.074 1.089 1.105
0.1 1.011 1.020 1.026 1.033 1.041 0.1 1.010 1.016 1.020 1.025 1.031 1.038
Table 3 Stress intensity factors for property distribution f 3.5
=cosh?(By); hy=h,=0.5h

ka/To\@
a/h ph=%=0.5 gh=+x1 Bh=*+1.25 gh=+*1.5 Bh=*+1.75 Bh=+*2
1.0 1.367 1.337 1.314 1.288 1.257 1.221
0.9 1.323 1.295 1.274 1.249 1.220 1.187
0.8 1.279 1.253 1.234 1.210 1.184 1.154
0.7 1.234 1.210 1.192 1.171 1.146 1.119
0.6 1.188 1.167 1.151 1.132 1.110 1.085
0.5 1.143 1.125 1.111 1.095 1.076 1.054
0.4 1.100 1.085 1.074 1.060 1.044 1.026
0.3 1.061 1.049 1.040 1.030 1.018 1.004
0.2 1.028 1.021 1.015 1.009 1.001 0.9918
0.1 1.008 1.004 1.002 0.999 0.996 0.9921

Table 4 Stress intensity factor for property distribution

=cosh?(By+1); h;=h,=0.5h

f

a/h fh=+0.5 gh=+1 Bh=+1.25 Bh=+1.5 gh=+1.75 Bh=+2

1.0 1.379
09 1334
0.8 1.289
0.7 1.243
0.6 1.196
0.5 1.150
0.4 1.106
0.3 1.065
0.2 1031
0.1 1.008

1.383
1.338
1.293
1.246
1.199
1.153
1.108
1.067
1.032
1.009

ky/Toy@
1.386 1.389
1.341 1.344
1.295 1.298
1.248 1.251
1.201 1.204
1.155 1.156
1.111 1.111
1.069 1.069
1.034 1.034
1.009 1.009

1.392
1.346
1.300
1.253
1.205
1.158
1112
1.070
1.035
1.010

1.393
1.348
1.302
1.254
1.207
1.160
1.114
1.071
1.035
1.010

bla

Fig. 9 Stress intensity factors for two collinear cracks in a
FGPM strip; a=(c—b)/2=0.5h, h,=h,, f=exp(2By)

+1)2. Since the material property must be positive defingy,
+1 should not equal zero in the entire regionyofThis means
that forh,;=h,=0.5h, gh can approach but can not equaP.

A sample result for two collinear cracks in a FGPM layer is
shown in Fig. 9 which also show the stress intensity factors in the
corresponding homogeneous layee., for 5=0). Again, the elec-
tric displacement intensity factors can be obtained from(E§).

In this example the layer thickness is used as the normalized
length parameter. The half-crack length is fixedaas0.5h. b/h

=0 andb/h—o correspond to two limiting cases of a single
crack of length 2¢—b) andc—b, respectively. The figure shows
that for b—0 as expectedks(b) becomes unbounded, whereas
ks(c) tends to the values corresponding to a single crack of length

clear that ag3 increaseks decreases. The results clearly indicatec.
that for a material with property distributioi{y) = cost(By) the
stress intensity factdk; is smaller than the corresponding value
for a homogeneous piezoelectric layee., for 3=0). The same
trend can be found in Fig. 6.
Table 6 shows the stress intensity factors fily)=(By material strip under antiplane shear is investigated for a class of
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1 Introduction shell-type structures where unstable post-buckling occurs. In lo-

. . . S alized buckling, although large deformations are limited to a
Elastic stability theory is a well-worked subject in structurafma" region, the location of the region is often uncertain and can

mechanlcs_ and has proved to be successful n d_escrlblng com tentially be at numerous points within the system. As shells are
cated nonlinear phenomena through the application of appropri BSminent structural elements, the study of their buckling behav-

mathematical techniques. There has naturally been a trend ofaléa- is of importance to engineers. Although localized post-

analytical and computational tools have been brought to bear Hckllng solutions have been identified, relatively little has been

e problems. Very fen progress hasbeen mace by modeling fEfced oncerning e sabily o e souons emseles and 1
zngdcetulzeSO?;sfgyvcgljéilq eenlfsm;r?;sa\gs'tuhm?r']mptlrl]g??();%?rr]esgné%tr'geﬁr_cted close to the critical buckling load and others which have
p 9 ) examined the general problem but for a limited—one might argue

vative. This is particularly true in the study of localized buckling Cn : L s
[1], and, recently, some of the methods developed have been %g very realistic—range of nonlinearitiés.g., where only a de

pidirect t mor relsto Systems i e of compleateg -, 1o BeSeTLOU ETLEn = o e some o
fggwgfkaigﬁg?;t%sazgn}g:g:'a.:_ﬁé%p;;gggé{% LTEB?ISZ\?:(;- on the classical notions of potential energy and the axioms above.

. L n . - The total potential energy/, of a structural system comprises
the way by identifying total potential energy _of_an elastu_: syster 0 components viz. the strain energy stored in the structure due
as being fundamental to the study of equilibrium solutions a

their stability. The latter work forwarded two axioms regardin deformationst), and the work done by the loadifigin moving

the equilibrium of structural systems described by a finite set fdlstanceﬂ. This is written as
generalized coordinates. The first of these states that an extremum
with respect to all the generalized coordinates of the total potential
energy represents an equilibrium solution whose stability is gov- V=U-PE& (1)
erned by the second axiom: this says that an equilibrium is stable
only if given by a local minimum of the energy. These two axioms
encapsulate the analysis of post-buckling of engineering structures ) )
as long as they remain within their elastic regimes and the loadidgd if the energy can be written down in terms of a setof
is conservative, i.e., it maintains its magnitude and direction dugeneralized coordinate®;, then equilibrium occurs when
ing any deformation.
In recent times attention has turned to the various forms of
buckling which better reflect the forms attained by real structures. N
For example, periodic buckling is found in structures with stable —=0, fori=12,...n. 2)
post-buckling behavior such as plates under in-plane compression dQ;
and is characterized by significant deformation throughout the
structure. Localized buckling, on the other hand, can occur in

Cormibuted by the Abolied Mechanics Division offE A © The most convenient form of the generalized coordinates depends
ontripute: Yy the Applie echanics Division O MERICAN CIETY OF H H _
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- on th.e context .Of the structure under. Cons.lderatlon'. I the post
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septemb_U(:k“ng deflection is eXpeCte_d to be sinusoidal th_en it seems sen-
ber 25, 2002; final revision, September 22, 2003. Associate Editor: R. C. Bens@ible to decompose deformations in terms of Fourier components.
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMe€ly the other hand, if a structure is long in the sense that the

ing, Journal of Applied Mechanics, Department of Mechanical and Environmen ; ; ;
Engineering, University of California—Santa Barbara, Santa Barbara, CA 931(;@|‘-’:ltural length scale of buckling phenomena is small relative to the

5070, and will be accepted until four months after final publication of the paper it’s&mire length then some other form may be useful as we shall see
in the ASME DURNAL OF APPLIED MECHANICS. below.

lyzing questions of increasing sophistication as more and m
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Fig. 1 An elastic strut resting on an elastic foundation acted
on by a compressive axial load

Fig. 2 The von Ka rman analogy between the post-buckling re-

sponse of a cylindrical shell element (panel) and the up-
2  Problem Formulation down-up response of a strut-on-foundation model. If the panel

is thin, the rings have very little bending stiffness and act as

We examine the stability of a continuous one-dimensionglin arches for normal compressive loads (see the top right
structure which is both long and admits localized solutide$, diagram). The load-deflection curve for such a structure has
Previous work on the stability of post-buckling solutions in thighe well-known shape shown in the bottom graph.
problem has concentrated mostly on analysis close to the bifurca-
tion point but the stability of a post-buckling solution can vary
significantly when higher-order nonlinearities modify the effects
due to the one dominant at criticality. For the finite length versiofurcation, the nonlinearity which dominates in this region must
of our present example Lange and Newéll used a double-scale have a negative coefficient. This choice means that the bifurcation
approach to demonstrate that close to criticality the solutions #ioint is unstable and localized buckling is then favored over its
furcating from the fundamental state are unstabke also F(i8] periodic counterpart as it requires less energy to be triggéied,
and Calvo et al[9] for extension to localized solutions in theHigher-order positive terms are then required to cause the system
infinite-length case More general results were obtained by Sando restabilize. In order to model these various features we choose
stede[10] who examined this model but with only a destabilizingo capture the restabilization phenomenon at the lowest possible
quadratic nonlinearityd,=0 in (3) below). He showed that such orders so that in addition to the linear term in the foundation force
primary solutions are stable for a certain load range for rigid loaé-negative quadratic term and a positive cubic term are included.
ing only—all solutions are unstable under dead loading. The terhfius we take
primary solution, the form which bifurcates from the critical
point, is taken to mean a localized profile whose amplitude decays
monotonically from the center of localization and is usually remiwhere the foundation constarksc;, andc, are all positive. This
niscent of a hyperbolic secant function. With the addition of ahoice of nonlinearity is reminiscent of the analogy used by von
restabilizing cubic nonlinearity, however, the situation becomé&rman who proposed a similar model to describe the post-
yet more involved and it is this that we wish to tackle, at least ibuckling response of circular cylindrical shells under axial loading
part, here. This type of solution is known to bifurcate from the fldsee Fig. 2 The radial displacement of the shell is asymmetric
profile at the buckling load of the strut and, in fact, there are tw.e., there is more resistance to inward deflection than to outward
such solutions which emerge at critical loading. In passing, wkeflection and also exhibits the destabilizing-restabilizing behav-
note that other forms of localization are possible which are essdor given by (3). Although the above choice may seem to be a
tially copies of the primary profile glued togethgtl]. However, crude model of the full shell problem, it does have the merit of
these forms do not emerge from the critical state and are stricéihibiting many of the essential features required while maintain-
subcritical phenomena. We will focus our interest on primary sérg some simplicity. The strain energy of the system is the sum of
lutions in the remainder of this study. bending energylg, and energy stored in the foundatiddg,
The structure to be studied is a long axially compressed stwhere

resting on a nonlinear elastigVinkler) foundation(see Fig. 1

F=ky-ciy*+cyy® 3

Let x denote the axial coordinate agdhe vertical deflection. The UB:} El f y"2dx

linear bending stiffness of the strut is taken to Bk and it is 2 —w '

assumed that the strut rests on a nonlinear elastic foundation 4)
which provides a resistive vertical forde per unit length(see Uz ” Ek 2. Zo v st d

[5]). The structure is loaded by a parametric conservative com- F . \2 YT gl Ty Gy aX

pressive axial forcé. ) ) o
and a prime denotes differentiation with respeciktdnd short-

2.1 The Nonlinearities. When it comes to the choice of ening,&, is taken to be the standard form for a strut with only the
nonlinearities in our model we have several options. Firstly, if Wading-order term contributing, i.e.,

wish to examine large deflections, then elastica nonlinearities
ought to be included3,12], but it is then easy to lose sight of the -~ M
important aspects of the analysis as they can be obscured by com- &= 2 way dx ®)
plicated algebra. On the other hand, without due care, important
terms may be omitted leading to an over-simplified model. Wand, inserting all these quantities into the basic form for total
therefore choose a model which is sophisticated enough to adftential energy1), gives
realistic behavior but also one where the analysis is not obfuscated “ (1 1 1 1 1
by extraneous nonlinear terms which do not add to the physical V:f (—Ely”z— Py 2+ —ky?— =iy + eyt dx.
relevance of the model to the order of approximation intended. 2 2 2 3 4

To ensure that the structural system undergoes a subcritical bi- (6)

— %
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The governing differential equation is obtained by a straightfor- * *
ward application of the calculus of variations and the system can Ai(x):E ein(“(X), Bi(X)ZE sjBi(j)(X) (13)
be readily nondimensionalized by the scalings =1 =1

4 [k p y and progressively higher-order coefficientseoéxtracted, we de-
X— X\ /_, Po—, y—1—, (7) rive a set of equations which reveal the behavior of the amplitudes
El VKEI [ in the formal expansions of eadh andB;. The first equation

arising from the double-scale approach which gives non-trivial

to give the key ordinary differential equation for the model, ¢ . .
9 y y g information concerns the amplitude of the fundamental mode at

y"+PY'+y=y*+cay*=0. (8) the first-orderA{M and is
Then the only remaining parameters are the axial |Ba@&nd the AL 19
restabilizing cubic coefficient,. 4 SR\ €3 T b N € DL (14)
axz t \18 47t

; T For bounded localized solutions the coefficient of the cubic term
3 Asymptotic Results for Stability must be positive which yields the conditien<38/27,[14]. For
In this section we sketch results for the problem based onigger c, the asymptotic theory predicts that localized solutions
double-scales asymptotic approagh3]. It will be seen in due cannot exist and this result ties in with the study of Woods and
course that the theory predicts only unstable solutions and is iDhampney$15] who used a normal forms type of analysis for the
capable of capturing the behavior of the system far from the poirdstabilizing strut problem. Apart from this condition op, Eq.
of bifurcation. This deficiency will be subsequently rectified and @14) is only expected to be valid very close to the critical point at
method developed which can track solutions much further into te— pC and gives no clue as to how the system may evolve when
post-buckling regime. Moreover, our strategy is capable of dg-ijs not small.
scribing accurately both the buckled shapes and stability characThe system we are studying isversiblewhich means that
teristics of the structure under the more general dead loadiffgre is an involution which stems from invariance of solutions to
conditions. the transformatiory(x) — y(—x). Also, any solution can be freely
translated along th&-axis and so we can seek solutions on the
3.1 Linear Eigenvalue Analysis and Basic Perturbation semi-infinite domain € X< with the imposition of the so-
Results. To isolate the value of the parametric loadiRgat called symmetric section conditioyf (0)=y"(0)=0. The slow-
which the flat fundamentglinbuckled state loses stability it suf- space analysis completely decouples the fast variation from the
fices to examine the linearized form (8) so that the quadratic slow one,[13], and, in particular, suggests that the phagein
and cubic terms are omitted. Then, for positRethree regions (12) is arbitrary. However, a more advanced analysis based upon
with distinct behaviors can be identified. Wh&>PC=2, the the ideas of exponential asymptotics reveals that for primary lo-
four eigenvalues of the truncated problem are purely imaginag@lization ¢, is not free but rather is restricted to the discrete
and are symmetrically spaced about the real axis. The deflectiorv@lues¢o=0 or , [16,17]. This reinforces the importance of the
this case is thus expected to be periodic.iis P is reduced, the symmetric section which means that all primary solutions to this
pairs either side of the real axis coalesce wiRenPC and the System must be even functions about their own cenfétsand
system undergoes a Hamiltonian-Hopf bifurcatigh]. Finally,
onceP<PC, the two pairs split symmetrically into the four quad- A(11>: 6
rants of the complex plane with the formsa*iw where

\/ﬁ \/ﬁ where, for later convenience, we adopt the definititxs 38/27
—\/Z= — =\/=+— —Cy.
a ST @ 2+ 7 9) 2

The asymptotic form in ascending powers ©oto the formal
These parts of the eigenvalues of the linearized problem #f@uble-scale approximation of the static systen 3],

10- 2 - hﬁfz\Fﬁfl’z hy (15
—?cz secz— 3 sec2 (15)

important in motivating the perturbation expansion below and in X X X
particular, it is observed that the real pa#,is small whenP is  y=ga, sech: cog wx+ ¢g) + 2| a, sech= tanh= sin(wx+ ¢g)
[ 2 2 2
close toP™.
In the vicinity of P¢ a double-scale perturbation analysis re- 1

1
veals the behavior of the emergent primary solutions. To this end + —af 1+ = cos A wx+ ¢g)

X
secﬁi)

we define a small perturbation parametgnwhich measures evo- 2 9
lution from the critical state such that X X
S2=pC_p_o_p (10) +&% ag sechs o wX+ do) + 2y secﬁgcos{war )
whereupon the real and imaginary parts of the linear eigenvalues 1 X X
(9) become + 5z au(4ag+ 3a2)secﬁ§ tanhz sin 2( wX+ ¢g)
_¢ e 4 (275—32) X
a=z, 0=1-g 00D, (11) Waisecﬁicosawx+¢o))+O(e4), (16)

The amplitude of the solutions varies on a slower scale than t\r/]v%ere the constants — a, are given b
period of the deflection @ =P° and so we define a slow space B8 9 y

scale such thaX=ex. By expressing/ as 2
al_z -5 1/2,

y= 2 {Ai(X)cosi (wx+ ¢g) +Bi(X)sini(wx+ ¢g)}, (12)
i=o

3 16 /2
) ) ) a,= 571/2 — — _571 ,
whereA; andB; are slowly varying amplitudes ang, is a phase 2 81V3
angle, the governing E@8) is transformed into a partial differen-

tial equation,[6]. If each amplitude is also expressed as a power , _ g-2 _ 3_17 \/E_ 1252\ﬁ 51t 10432\ﬁ 52
series ine s 72 V6 81 V3 729 V3 '

336 / Vol. 71, MAY 2004 Transactions of the ASME



, 307\F 2296\F 46912 |2 load. Furthermore, for the cas®>0, it is possible to follow
=5 _ S S R B~ . : . .
a,==ad 72 N6 223 V3 ) 561 V3 ) ?{:A(f:frately solutions into and beyond the first restabilizing region,
It is fortunate that the solutions of higher-order equations arising The double-scale solutions, though not very accurate when ex-
in the perturbation expansion can also be found explicitly. amining the behavior of the structure other than very close to

) . . criticality, do nevertheless have some desirable properties. For
3.2 Analysis of Dynamical Stability. In order to assess example, they decay exponentially in both directions about an
asymptotic stability, particularly under dead loading conditions, §ssymed center at a rate dictated by the real part of the linear
is necessary to add an acceleration term ’go the.governlng equa%ﬁﬁbnvalues,(ta in (9)). Any approximate localized solution,
of the static model. We proceed as outlined in Calvo ef@l. eyen away from the critical point, ought to incorporate such be-
whereupon havior. Thus we use a procedure involving two steps culminating
my+Ely"" + Py’ + ky—c,y2+c,y3=0 (17) inahybrid technique. Firstly, we take the form of the double-scale
) ] solution but treat the amplitudes of each mode as unknown. Fur-
wherem is the mass per unit length of the strut, a dot denoteermore, the accuracy of the solutions is enhanced by allowing
pal’tlal dlffel’entlatlon Wlth I’espeCt to t|me, and a pl’lme IS NOW ﬁ]e shape factor& and w to be Variables as We” Thus our as-

partial spatial derivative. A nondimensional version of this equaymption is that the primary solution has the form
tion can be written as

V+y"+ Py’ +y—y?+c,y3=0. (18)
To carry out a double-scale analysis on this equation, it is nece- Aq sechArx cosAgx + A, sectf Arx+Ag secht Arx cos 2Agx
sary to define a slow space scale-ex as before and we also + A, sechA;x tanhA;x sinAgx+ As sech A;x cosAgx
need to introduce a slow time scale such thatet. The ampli-
tudes of the Fourier modes {12) and(13) are generalized to be +Ag sectf A;x tanhA;x sinAgx (22)
functions of bothX and T so that AW=AD(X,T) and B

=BU(X,T). Following the procedure described earlier, it is

found that the lowest-order equation which governs the ampfRf SOme constant&, —Ag. The first five terms in22) are im-
tudes is now mediately motivated by the double-scale solutiti6). Most

higher-order harmonic functions are not included(22) as the
PAYPAY 3 amplitudes of such terms tend to remain small for a range of the
S =A—— Al Z5A§) (19)  post-buckling regime. One way of viewing this technique is to
JgT 28 recognize that in many perturbation expansions the functional
which encapsulates the static version of the equation when tidggm of the higher-order terms can be well approximated by a
derivatives are absent and so has the solution givefish In combination of the lower-order terms. Thus, much of the effect of
addition if a small dynamic disturbance is present such that higher-order terms can be achieved by applying our hybrid
Rayleigh-Ritz approach to a relatively small number of lower-

AP(X, T)=A(X)+a(X)e'T, (20)  order functions. However, one extra tefwith coefficientAg) has
whereA(X) is the function defined iif15) then substituting20) ~Peen included which would arise if the expansior(i6) were to
in (19) and linearizing ina(X) gives _be taken to hlgher_ c_)rq_e[ﬂ4]. In numerlca_l terms, this co_effl_uent

is found to grow siginificantly far from criticality and so its inclu-

d’a X 5 sion seems appropriate.

4&+ 6 secﬁi—l—)\ a=0. (21) Our experience has shown th@?2) constitutes a reasonable

compromise between the conflicting factors of accuracy and ease
The above equation has an unstable eigenfunaiissectt X/2, of computation. Application of a similar hybrid technique but us-
which is still localized in space, with eigenvalae=v3. Thus the ing a Galerkin procedure to describe nonperiodic solutions has
original solution will grow in time with exponential rate been reported by Geer and Ander$é8]. They were able to put
exp(/3et). It is important to note that the above analysis reveat§e use of nonperiodic functions to span the solution space on a
that the instability is independent of the restabilization present {iim footing and it has been demonstrated that the Galerkin and

the structurgwith the caveat that,<38/27). Rayleigh-Ritz procedures give identical results in the present elas-
This double-scale approach is unable to account for highdic strut model[19]. _ _
order effects as it is restricted to the vicinity Bf= PC so thats is By inserting(22) into the total potential energy functione),

small. It would be desirable to find some method which, althoughe deduce tha¥=V(A;), wherei=1,2, ... 8 Naturally, finding
based on a simple mode-based approach, did have the added aiilexplicit form of the expression is a long-winded exercise so we

ity to describe phenomena further into the subcritical region. turned to the software Mathemati€20]. The requisite integrals
were calculated using contour integration in the complex plane

. . . : around appropriate closed paths and exact expressions were ob-
4 Analysis Far From the Bifurcation Point tained, [13]. Equilibrium is determined by the solution of

In order to analyze the behavior of the structural system “fargv/9A;=0 for i=1,2,...,8; analternative view of this is the
from the bifurcation point, an alternative strategy needs to Bpecification that the various modes should be mutually orthogo-
adopted. We necessarily need to turn to a numerical methodnél. MATHEMATICA was used to evaluate these derivatives and the
suitable candidate which is capable of both determining approxesulting set of nonlinear algebraic equations were then solved
mate equilibrium solutions and their stability is a modifiechumerically using a multidimensional Newton-Raphson proce-
Rayleigh-Ritz procedure which can be motivated by the form aefure,[21]. A requirement of the scheme, which turns out to be a
the solution garnered from the slow-space expansion. Convésonus, is that second derivatives\bfare required and this allows
tional Rayleigh-Ritz analysis is suitable for periodic analysigs easily to find out the nature of the equilibrium stagrema
which stems from the assumption that amplitudes of the constitof V).
ent modes are constant ). That Rayleigh-Ritz ideas can be In accordance with the theory of elastic stability, a stable equi-
adapted to the study dbcalized post-buckling phenomena waslibrium path is determined by a local minimum of the energy
first demonstrated by Wadee et fL3] for the case of quadratic functional,[5]. With our modal description with the amplitudes
nonlinearity €,=0). They showed that the procedure is able taow known, it is sufficient to show that the Hessian matrix/ag
track primary solutions from very close ®° right down to zero positive definite to ensure stability. Thus all eight eigenvalues of
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this matrix must be greater than zero but, rather than showing

these individually, we depict the determinant of the matrix where
the criterion
PV 14

A:deﬂ< m)>0, fori,j=1,2,...,8 (23)

is anecessaryondition for stability.

The second derivatives of with respect to the variables 0.7
Ai, ... Ag are needed to find the numerical solutions to the equi-
librium problem and thereby find. As the positive definiteness
condition is another way of expressing the second axiom of elastic 0.1
stability, it is sufficient to demonstrate the stability or otherwise of 0.2 0 005
primary localized solutions at least to the level of approximation A

assumed in the Rayleigh-Ritz procedure. Fig. 3 Variation of A (Eq. (23)) with load P for the model with
only a quadratic destabilizing nonlinearity (c,=0). Sample val-
ues: A(1.0)=—9.6X10"7 and A(0.0)=—7.5X10"10,

5 Numerical Comparisons

It has been noted earlier that two paths bifurcatePat P©

which correspond to the two permitted values of phase angl&?

. c o
$0=0 or = between the center of the slowly varying amplitudé ill bifurcate fromP™ but then both undergo an infinite number of

and the sinusoidal oscillatioh17]. It turns out that both of these oscillations between two limiting subcritical parameter values,

e >~ [15]. This phenomenon is calleshakingand the initially localized
paths can be followed from close to criticality by the Rayle'ghprofiles eventually evolve into a periodic form.

Ritz procedure. Formerly, only the branch correspondingb§o ~ The three restabilization values chosen give rise to qualitatively
=0 has been tracked13,14, but in addition here we demon- gifferent behaviors from a physical perspective and we assess the
strate that the other one can be followed with a similar degree gécuracy of our approximate scheme against all three. The results
accuracy. ) ) . ) are summarized in Figs. 5-7. The bifurcation diagrams show
Our approximate solutions are compared directly against ngood agreement between numerics and the Rayleigh-Ritz proce-
merical solutions obtained using the boundary value solvg(re well into the first restabilization region as is confirmed by the
AUTO97, [22]. It should be noted that whereas finding localizedelected eigensolutions on the branch corresponding to primary
solutions to the strut model is straightforward using this progranycalized solutions centered at a trougin ¢,= ) shown in Fig.
it is nonetheless incapable of addressing the issue of stabiligy(see Wadee and Bassdmd4] for eigensolutions on the other
Thus a key attraction of our hybrid approach is that not only Catanch,$,=0). For the smallest value af,, the range between
it follow localized solutions but it can also furnish important in-the maxima and minima of the snaking curve shown in Fig) &
formation regarding the stability of these solutions. large. Asc, is increased, the range decreases and both extrema

5.1 Quadratic Nonlinearity Only: c,=0. Before proceed- alSO get progressively closer ®= PC (Fig. 5b) and (c)). The
ing to the case of a restabilizing foundation, we present the sfigtérminant of the Hessian 8f A, for each branch in Fig. 5 is
bility calculation for the quadratic foundation cage=y—y? SNOWNin Fig. 7. The points identified &, andO, on the curves

which is known to have unstable solutions under dead loadifignote the positions on the branchgg=0 and, respectively,
conditions,[10]. The procedure adopted to continue a numericjnereA changes sign. These locations correspond precisely with
t

solution in P was as follows. An initial solution was found neart'® POsition of the folds where the solutions evolve from being

o . . - : le to stable.
criticality, typically at P~1.9, using a shooting techniquig]. unstab . .
This was then fed intauTos7 as an initial solution which could In all three cases depicted the solutions are accurately tracked

be tracked either towarda® or zero. In practical terms, numericalamund the first limit point after which the solutions become
solutions very close the critical point do not converge very we table. The change over from stability can readily be identified in

and so they are only shown up to abdut1.96. The Rayleigh- ig._ 7 whereA can_be seen to change sign vv_hen it is pI(_)tted_
Ritz solver requires a good initial guess for convergence to ainst end shortening although there are seemingly flat regions in

: s e case ofc,=0.24 and 0.3. This backs up the observation of
assured and then these solutions can be trackBdAmound limit 2 : ; .
points, however, continuation in one of the amplitudes is possib%addOCks[zs] who has postulated that during evolution of static

as described in Wadee and Bassid] until the path on the other solutions under the variation of a parameter, their instability un-
side of the fold is picked up P dergoes a transformation to stabilifgr vice versa if the path

As the solutions are supposedly unstable, we would expect {facounters a limit point. The swapping from instability to stability

energy not to be a minimum throughout. Figure 3 shows Akad
for the range ofP shown although it approaches zero quite
quickly. Thus we seem to have successfully established a quanti- F

tative criterion to judge the stability of primary localized solu- c2 =03

tions. Details of the post-buckling solutions referred to here can co =04

be found in Wadee et aJ13]. 0.75 e =0.24
5.2 Restabilizing Case: &c,<3827. The Rayleigh-Ritz 0.5

analysis was carried out for three positive values.ofvhich give 0.25

rise to different behaviors of the foundatieee Fig. 4. The first, Y

c,=0.24, represents a case where the foundation fd¥ceye- —.5 05 1 15 2 25 3

comes negative for a range of positiydefore bottoming out. In

the second casec{=0.3), the foundation response is always re- 5

sistive but there is a negative stiffness region for positivend 75

finally, the last cased,=0.4) is one for which the foundation

always resists deflection and its stiffness always remains positiygy. 4 The variation of foundation force F=y—y2+c,y?
The bifurcation diagram for a restabilizing model with is  against lateral deflection y for various values of the coefficient

more complex than for the quadratic-only counterpart. Two patles
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Fig. 5

solutions of the restabilizing strut model with
(¢o=0) and trough-centered

(AUTO97) solutions for peak-centred

against end-shortening,

according to the classification of the extremum matches closelyFurther into the post-buckling regime the stable region is also
that expected for both forms of localized solutions which bifurcateccurately tracked in all the cases and the second fold is detected
from the critical point(Of course, if pairs of negative eigenvaluesas is evidenced bk rapidly approaching zero again indicating the

existed this would also give a positive determinant but we haselution is once again becoming unstable. After this point, how-
ever, the accuracy of the solution diminishes rapidly and is not

found only positive eigenvalues in that regipn.

Initial bifurcation diagrams depicting the post-buckling behavior of primary localized
(a) ¢,=0.24; (b) c,=0.3, and (c¢) c,=0.4. Numerical
(¢po=) orbits are shown

&, with solid and dashed lines, respectively. Discrete points show solu-
tions obtained using the nonperiodic Rayleigh-Ritz procedure.

T 1
o in
0 ~--—«Aj\;“\/\,_-,
) f\
e |l
50 _50 0 50
' F M\
. o-——-——«W« ]

Fig. 6 Comparison of buckling solutions obtained using

Ritz method (discrete points ) for the fold points A—F identified on the

Journal of Applied Mechanics

AuTO097 (solid line ) and the Rayleigh-

¢o=m branches in Fig. 5

MAY 2004, Vol. 71 / 339



Fig. 7 Variation of the determinant of the Hessian of the energy function, A, with end-shortening
for various values of ¢, (&) 0.24; (b) 0.3; (c) 0.4. The peak-centered branch is labeled A, and the
trough-centered branch is labeled  A,. The fold point on the corresponding bifurcation diagram

in Fig. 5 is identified with a large dot.

shown here. The infinite snaking of the two branches eventualigtermining whether the equilibrium poinExtrema are maxima
leads to a periodic solution—each turning point corresponds to tbeminima of potential energy with respect to amplitudes of these
growth of the amplitude of another pair of sinusoidal oscillationfunctions. Agreement with independent numerical solutions and
either side of the center of localization eventually to the size of th@reviously known theoretical results is excellent well into the
central deflection[15]. post-buckling of the strut model.

The nonperiodic Rayleigh-Ritz procedure is capable of detect-The study of the stability of localized buckling is still in its
ing the early localized behavior of the system. On the other haré/ative infancy. An important case that would be of considerable
an accurate representation of the limiting post-buckling behavimterest is the stability of localized solutions in the elastoplastic
can be obtained by a straightforward application of conventionadodel developed if3]. By adopting an unstable elastoplastic
periodic Rayleigh-Ritz analysis. The key feature to note about tigenstitutive law, our analysis has revealed that structural localiza-
periodic solution evolving from the localized one is that they bottion is, roughly speaking, a precursor of material instabilities via a
have the same energy corresponding to the so-cMkedvell cri-  bifurcating branch of unstable solutions for the particular model
terion in the sense described by Hunt et[@4]. The mechanism adopted therein.
of the transformation is understood and now some quantitativeThe case highlighted here is that of dead loading where an
results about stability have also been established which confiapplied force is the controlling parameter. The rigid loading case
other studies|25]. would be studied by takingy as in(4) and minimizing it subject

to the integral constrainf=const.(see(5)). This imposition re-
6 Conclusions strictg behavior of the structure such th_at some regimes in which
. . . solutions are unstable under dead loading are in fact stable under

In this work we have established a numerical method to assegditions of rigid loading[10,25]. Fully numerical work shows
the stability of primary(single-humpegllocalized solutions which that the solution paths extend further into the regime and that after
emerge from the critical state of a strut-on-foundation model. Thefew oscillations of the snaking curve, the strut becomes unstable
technique has successfully predicted the stabittyotherwis¢ of  ynder rigid as well as dead loading—where the curve bends back
such solutions both for a simple destabilizing nonlinearity and fey, jtself. Such behavior is reminiscent of the severe post-buckling
the case in which the initially unstable path is restabilized byf shells and equilibrium positions on these parts of the curve are
higher-order nonlinear effects. Whereas asymptotic analysis faiist physically realizable. However, in the early post-buckling evo-
to pick up any change in stability due to restabilization, th@tion a study of the subtly distinct problem of rigid loading may

method presented here has the attractive feature of not only rgpyyve enlightening from the perspectives of engineering and ap-
resenting the solutions accurately but is also able to track thejlled mechanics.

around folds as the loading parameter is varied and to give a
guantitative assessment of where their stability characteristics
change. By using a solution of the form originating from a double;
scale analysis, we have been able to continue accurately pd%{:_knowledgment

buckling solutions under conditions of dead loading far beyond CDC was supported by a UK Engineering and Physical Sci-
the region in which the perturbation expansion is valid. Broadignces Research Council Graito. GR/N05666/0L

speaking, the assessment of stability is based on writing the totaWe are grateful for the comments of the referees which have
potential energy in terms of a set of nonperiodic modes and thkalped to improve the presentation of this paper.
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structure. As the differential model becomes increasingly popular,

I . . . uestions concerning the complexity and consistency of the model
Structures exhibit inelastic behavior under severe cyclic loal Yo brought up morgfrequentlF;/ y y

associated with earthquakes, high winds, and recurrent WaveSyq eytended Bouc-Wen model of hysteresis is carefully reex-
When the restoring force is plotted against the structural deformgyined in this paper. Two significant issues are uncovered. First, it
tion, !nelastlc behavior often manifests itself in .the form of hysg shown that the unspecified parameters of the model are func-
teresis loops. The area enclosed by each loop is a measure oftfhgally redundant. In either the classical or contemporary version,
energy dissipated over a complete cycle as the result of intergdle of the model parameters can be eliminated through suitable
friction within the structure. In general terms, hysteresis refers teansformations in the parameter space. The number of model pa-
the hereditary and the memory nature of an inelastic system,rameters can thus be reduced without affecting the system re-
which the restoring force depends not only on the instantanecponse. Second, local and global sensitivity analyses are carried
deformation but also on the past history of deformation. Mechar#iut on the differential model of hysteresis. The global analysis
cal and structural systems capable of dissipating appreciable gmployed is a probabilistic method recently expounded by Sobol
ergy tend to possess large hysteresis loops. Hysteresis is thus gafl it can account for the mutual interactions of the parameters.
ticularly important in depicting the damping characteristics o hrough extensive Monte Carlo simulations, the relative sensitiv-

inelastic systems. Yet, a fundamental and comprehensive theory?0f ach parameter is assessed. It is found that some parameters
hysteresis has not been developed. In order to address prac e model are rather insensitive. These insensitive parameters

problems in the contemporary design and analysis of structurg ould perhaps be set to constant values, thereby resulting in a

henomenological models of hysteresis are often used greatly simplified hysteretic model.
P 9 Y oo The two issues discussed above are indeed significant in updat-
In the past few decades, various phenomenological modelsilq

h s h f th el the differential model. In the literature, there are many deduc-
ysteresis have been proposed. One of the most widely accepjighs hased upon the extended Bouc-Wen model of hysteresis. In

models is a differential model originally proposed by Bdd¢ |ight of this update, some of these deductions may no longer be
and subsequently generalized by Wehand other researchers. Inyajid unless modified. The organization of this paper is as follows.
this model the restoring force and deformation are connectgglSection 2, the differential model of hysteresis in both its clas-
through a nonlinear differential equation containing unspecifigfical and modern forms are reviewed. The reduction of unspeci-
parameters. By choosing the parameters suitably, it is possiblefitsl parameters by transformation is then explained in Section 3.
generate a large variety of different shapes of the hysteresis loogensitivity analysis of the differential model is reported in Section
The classical Bouc-Wen model contains only five loop paramd- Finally, a summary of findings is provided in Section 5. As the
eters. The generalized differential model in its present form cogifferential model of hysteresis becomes increasingly popular in
tains 13 parameters; it can account for strength degradation, stiffeory and applications, it is hoped that the streamlining and re-

ness degradation, and even pinching characteristics of an inelaftignulation reported in this paper will allow it to be used with
added confidence in the years to come.

1 Introduction

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME- 2 Differential Hysteresis
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 17,
2002; final revision, Sept. 19, 2003. Associate Editor: A. A. Ferri. Discussion on the TO describe the differential model of hysteresis, consider an
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Joumali_ﬁ@|astic system possessing a finite number of degrees-of.freedom.

Applied Mechanics, Department of Mechanical and Environmental Engineering U ; ;
versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will ’bguppose the equation of motion can be decoupled and, along the

accepted until four months after final publication of the paper itself in the ASMEﬁreCtion of the generalized coordinatethe system is governed
JOURNAL OF APPLIED MECHANICS. by
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F ? Table 1 Parameters of differential model of hysteresis

Parameter Description
u
a Ratio of linear to nonlinear response
A By Basic hysteresis shape control
m n Sharpness of yield
S, Strength degradation
S, Stiffness degradation
{s Measure of total slip
q Pinching initiation
p Pinching slope
1 Pinching magnitude
Sy Pinching rate
N Pinching severity/rate interaction
n(e)=1+05,¢. (8)
Two unspecified degradation parametéisand o, are thereby
A A A A A Ay drd introduced. The pinching function(z) takes the form[5],
N 2,42
Fig. 1 Schematic diagram of an inelastic system h(z)=1-¢,e [z -azl75 9)

where sgnf) is the signum function ofi and z, is the ultimate
value ofz given by
mu+ cu+ Ry(u,z) =F(t) (1) ( A
"=

whereu is the system displacemerzjs an imaginary hysteretic B+
: , ; v(B+7y)

displacement, andn, c are, respectively, the mass and damping ] ]

coefficients. It is assumed that the excitatfft) is cyclic. In the The two functionsl; (&) and{,(e) control the progress of pinch-

development of the differential model, the total restoring forcég and are written as

Rt(u,z) is separated into an elastic and a hysteretic component by L(e)=C1—elPe)] (11)

Ry(u,z)=aku+(1—a)kz (2)

wherek is the stiffness coefficient andsx<1 is a weighting
parameter. Obviously, the restoring force is purely hysteretic
a=0; itis purely elastic ife=1. A diagrammatic representation of
the system is given in Fig. 1.

Basic hystersis loops may be generated if the hysteretic d
placementz and the total displacement are connected by the
nonlinear differential equatior?],

1in

(10

La(e)=(Yt+ y8)(N+{4). 12)

3ix unspecified pinching parametefs, q, p, ¥, J,, and\ are

thus present. Altogether there are 13 loop parameters of hysteresis
A a B ynd, 8, L dp o, a_md \. This generalized
El_odel of hysteresis possesses all the important features observed
In real structures, which include strength degradation, stiffness
degradation, and pinching of the successive hysteresis loops. The
probable role played by each of the thirteen loop parameters is
z=Au-gJul|z]" z—yu|z|". (3) summarized in Table 1. As an example of hysteresis loops gener-
ated by the differential model, consider a structure with natural

There are five unspecified loop paramet&rg, 3, v, nin Egs.(1) _ . _ .
and(3), which represent the classical Bouc-Wen model. Over ﬂfgrequencyfn 2.8Hz and damping factof=0.02 driven by the

cars. the original Bouc-Wen model has been extended sev caled E-W component of the 1940 El Centro earthquake over a
years, 9 . CVef@tation of 15 seconds. Puit=1, «=0.01, 8=1.4, y=0.2, n
times. Many new parameters have been added to fit a variety 0 5,=0.002,8,=0.001,{.,=0.95,q=0.25,p=2, $=0.2, 5
hysteretic shapes which include degradation and pinching. They' g0s and—0"1. When =199, =1.20, =8, =S Oy
; X . . =10.005, and\=0.1. When the restoring forde;(u,z) is plotted
result is a hysteresis model with 13 loop parameters given by against the system displacemenin Fig. 2, the evolution of the
Au—v(8|ul|z|" z+ yu|z|") hysteretic path is clearly shown.
=h(z) . (4) A differential model of hysteresis has many advantages in
K analysis. Chief among them is its ability to generate a large vari-
In the above expressiom,and 7 are degradation shape functionsgty of realistic hysteresis loops. Another advantage is the coupling
[3], andh(z) is a pinching shape functiof]. In general, degra- of the equation of motioiil) to loop equatior{3) or (4) to form an
dation depends on the response duration and severity. A congeerall differential system. This greatly facilitates subsequent the-
nient measure of the combined effect of duration and severity dgetical and numerical manipulations.
the energy

3 Elimination of a Redundant Parameter

t
E(t)=f (1-a)kzudt (5) Consider a nonlinear system governed by E@s.and (4).
0 From a strict mathematical standpoint, eithfn,u,z]T or
dissipated through hysteresis from initial tine0 to present time [u,u,R(u,z)]" can be taken as a solution vector. Note thistan

t. Since imaginary displacement while;(u,z) is a measurable force. The
t system response is usually chosen agi,R(u,z)]" since it is
g(t):f zudt (6) directly connected to the hysteresis loops. Upon solution of Egs.
0 (1) and (4), a graph ofR;(u,z) againstu is often compared to

Q?xperimental data from cyclic performance tests. A good fit would

is proportional toE(t), it may also be used as a measure i
response duration and severity. Many functional relations benme'@rq'cate that the loop parameters are specified properly. It must be

v, 7, ands are possible. From practical considerations, botnd remembered, however, that the thirteen loop parameters are em-

7 are assumed to depend linearly oms the system evolves: pirical parameters; they are not derived from fundamental equa-
tions of mechanics. It has never been claimed that all 13 param-

v(e)=1+46,¢ (7) eters are essential in producing the common features of hysteresis.
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— 1

=z (18)
150} o

5,=5, (15m)
100 —

A=A (15n)

As a consequence, the value Afis fixed at 1 under the above

transformation. It will be proved that when the parameter®in
are used in Egs.l) and (4), the same system response

[u,u,R(u,2)]" is obtained. WithP, the system equations be-

Total restoring force (kN)
o

ol come
mi+ cli+Ry(u,2) = F(t) (16)

-100 o o - -

. —_ [AG=w(Bld|[Z]" Tz+yulZ]™

5-h D Blullz["*z+ vl . a7
-150 Ui

‘ ‘ Note that both the excitation and initial conditions remain unal-

o, -3 2 -1 o 1 2 3 4 tered when the parameter set is changed fmo P. Postulate

Total Displacement u (cm) that

Fig. 2 Example of hysteresis loops generated by the differen-

) _ . . _ 1
tial model u(h=u(t), u=u(), z(t)=zz(t) (18)

whereu, U, z satisfy Egs.(1) and (4) with parameters fronP.

After all, the physical meanings of many of these parameters ha(\?gserve that the energy term
not been adequately clarified. A given set of loop parameters

uniquely determines the system response, but a given response s=(z= EUZ: Eé. (19)
may not determine the parameters unambiguously. It would be A A

very useful, particularly in system identification, if the number of . . . .
unspecified parameters can be reduced. If there is no hysteretic energy dissipated at0, then upon inte-

It will be shown that a class of transformations in the parametgfation
space can be devised to freeze one of the loop parameters without
affecting the system response. The transformations always map ()= Ea(t). (20)
one of the parameters to a constant in such a way that the system A
response, and hence the hysteretic trace, remains invariant. Since ) o
the hysteretic force (% a)kz is proportional tok, the stiffness The transformatiorf15) implies that
coefficient is used as an additional parameter to define the param-

_ —Q 1
eter set V=145,6=1+A8,Le=1+8,6=v (1)
P={Ak,a,B8,7,n,8,,8,,(s.9,p,%,6, ,\}. (13)
Define a transformation fror® into _ — 1
o 7=1+0,e=1+Ad,re=1+35,e=7 (22)
P={AKk,a,8,7,n,68,,6,.(s,0.p,,5,,\} (14)

so that L) =L(1-e P = (1-e APA) = (1—e ") =, (e)
2

A=1 (15)

k=(atA-ah)k (1%0) 52@:(%5@(%@:(%% bipe

1
(N+20)= 5 Lole)

— a (24)
4T At A—aA (15¢) _ i h
— _ A " ( 1
=A" Z,=|l=—= =
F=ATH () e ATy
7=An717 (1%) B A )1In1_ 1
n=n (156) “\vEry) ATaA% (23)
0,=Aé, (159) and
8,=Ad, (13n) h(Z)=1- £,e @ sant) -T2
{s={s (15) —1- ¢ e (@Asoni)—az, IV 7)) (26)
q=q (15)) . - :
. It can now be verified by substitution that the postulated relations
p=Ap (15k) in (18) satisfy Eqs(16) and(17). Moreover,
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Rr(U,2)= aku+ (1— a)kz.

o
=—— (a+tA—aAku

at+A—aA
1 « A Ak:L
T arATan) (e AT ek 2
=Ry(u,2).

@7)

Thus[u,u,R(u,z)]"=[u,u,Rr(u,2)]", and Egs(1) and(4) pro-
duce the same system response from eitheor P. In other
words, the solution vectofu,u,Rr(u,z)]" is_invariant under
transformation of the parameter set fréfrto P. The hysteretic
traces associated with and P are identical. The parametéris

transformations given by Ni et g19] will absorb eitherA or k but

will not preserve the hysteretic trace unless the extended param-
eters are also transformed. The class of transformations devised in
the present paper may be regarded as a generalization of this
earlier investigation.

4 Parameter Sensitivity Analysis

Assume that transformatiofl5) has been applied to fix the
value ofA at 1. There remain 12 loop parameters in the extended
Bouc-Wen differential model. Does every parameter contribute
equally to the system response? Will variations in some param-
eters combine to annul the effect of each other? Attempts were
made in the past to understand the influence of each parameter on
the system response. For example, Baber and Ndorinvesti-

redundant and can be eliminated from the differential model ghted the effect of variations & n, v, , {;, and{, on the ratio
hysteresis using transformatigh5). The same can be said aboutetween hysteretic and total displacement. Wong €t18l. stud-
the classical Bouc-Wen modél) and(3), for which the number ied the steady-state response of structures with different values of

of parameters can be reduced from five to four.

Instead of the parametdy, one can choose to fix, B, y, §,,
é,, p, or ¢ in the extended differential model, subject to certaimodel (3) containing five parameterg9]. Despite numerous ap-
restrictions. For example, the sign gfcannot be changed and plications of the extended Bouc-Wen moddll,12, there is
cannot be fixed at 1. As an illustration, the following transformalardly any systematic and comprehensive study of the influence

tion will eliminate the parametes, :

5,=1
A=5,A

— 1
p—zp
d,

<

¥
=5,

| &I

A=A\,

(289)
(28)

(28)

(28d)

(289
(28f)
(289)
(28n)
(28)
(28))
(289
(28)
(28m)
(28n)

the loop parameters, y, andn. Later on, a more organized study
of local sensitivity was conducted by Ni et al. with the classical

of loop parameters on the system response. One basic objective of
the current paper is to address this overlooked issue by conducting
sensitivity analysis.

The sensitivity of a model with respect to an input parameter is
the degree to which the parameter affects the model output. Sen-
sitivity analysis is the study of how changes in the output of a
model can be apportioned, qualitatively or quantitatively, to varia-
tions in different input parameters. There is a large class of tech-
niques for parameter sensitivity analysis. A review of some of the
popular methods is given by Hamlpg3], and Iman and Helton
[14]. In this paper, the one-factor-at-a-time method and the Sobol
sensitivity indices are used.

4.1 Local Sensitivity Analysis. The simplest way to con-
duct sensitivity analysis is to repeatedly vary one parameter at a
time while holding the others fixed at chosen nominal values. This
is referred to as one-factor-at-a-time method. It is easy to imple-
ment, often computationally inexpensive, and useful in providing
a graphical representation of sensitivity ranking. However, it is a
local method in the sense that it only addresses sensitivity relative
to the chosen base values and not for the entire parameter space.
How the base values should be chosen is often an issue itself. In
addition, interactions of parameters cannot be addressed by this
local method.

As a typical example of local sensitivity analysis, a shear wall
of the type described if8] is used. The shear wall has a natural
frequencyf,,= 3.6 Hz and damping factaf=0.02. It is driven by
the scaled E-W component of the 1940 El Centro earthquake over
a duration of 10 seconds, as shown in Fig. 3. Select as base values
«=0.05,8=1, y=0.1,n=15, §,=0.025,5,=0.15, {;=0.85,¢
=0.15,p=2.5, 4=0.1, 5,=0.005, and\=0.5. Each of these 12
parameters is then varied, one at a time, by up to 50% from its
base value while holding all other parameters at the base position.

If the indicesv and # are interchanged, a corresponding set ofhe choice of the base values is such that the resulting range
transformation equations is obtained for mappéhgto 1. In sys- spanned by each parameter is well within the usual range for
tem identification, the loop parameters are estimated from expsfiiting the experimental hysteresis loops of wood structures. De-
mental data on hysteresis loops taken from cyclic performanggte the system response byl,xz,xg]T:[u,[J,RT(u,z)]T at the
tests[6—8]. The values 0®, and 5, estimated from wood struc- pase values and by;,y,,ys]" when one parameter, say; is
tures are usually much less than 1. It therefore seems more CQgried. Define the root-mean-square error

venient to mapA to 1. This will be assumed in the next section.

The differential model is streamlined whichever parameter one

M 12

chooses to fix. In particular, elimination of one parameter will  €w= 2_:1 {(Xgi = Y1) ?+ (X2 — Y1) >+ (X3 — Y31) %} (29)
appreciably accelerate the convergence of numerical algorithms in =

system identification.

whereM is the number of sampling points. PMt=500 in this

It must be pointed out that functional dependence of the lo@xample. A spider diagram is obtained whgpis plotted against
parameters in the classical mod@8] was discovered earlier by Ni the varied parametex, as shown in Fig. 4. As each is varied
et al.[9]. When applied directly to the extended model, the twover its range, the maximum error
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Fig. 3 Scaled east-west ground acceleration component of 1940 El Centro earth-
quake

le,ll=maxe,) (30) sitivity analysis, it is not necessary to choose any base values.
. . Sensitivity with respect to a parameter is assessed when all model
is recorded. These maximum values may be used as a measurgph meters vary simultaneously, instead of one at a time. Often-

sensitivity. Based upoke,, the 12 loop parameters of hysteresigimes the sensitivity with respect to a group of parameters can also
are ranked in order of decreasing sensitivity in Table 2. With g assessed. A sensitivity index is a number that gives quantitative
slightly different sets of base values, it is found that the sensitivifiisormation about the relative sensitivity of the model with re-
ranking given in Table 2 does not change. It must be emphasizgghet to selected parameters. In this sense the nuliepirde-

that any conclusion reached through local sensitivity analysis gxeq in Eq.(30) is a local sensitivity index. A set of powerful
limited by the choice of base values. It is also limited by thgipq sensitivity indices is the group of Sobol indicEES).
excitation used. However, an inspection of Fig. 3 suggests cleal YSupposef(x)=f(x,, -+,x,) is a real integrable function de-
that the chosen excitation can only be synthesized by a large NWaq  on the n-dimensional unit cube I"={x|0<x<1,

ber of sinusoidal functions. That means its Fourier spectrum comn-... n}. Let
sists of many characteristic frequencies. Thus results obtained™ "'

with the chosen excitation would be typical of a large class of B
cyclic excitation. fo= Inf(X)dX (31)
4.2 Global Sensitivity Analysis. Most techniques for global
sensitivity analysis were developed fairly recently. In global sen- fi(x)= f f(x)dx/dx —f, (32)
|n71
wheredx/dx; denotes the product of all thex, exceptdx; , and
90 ¥ &
< B fij(XilXj): nizf(X)dX/dXide_fo_fi(Xi)_fJ‘(Xj). (33)
80 hd ¥ |
. 8,
70 « 8,
o n
‘g &0 o % Table 2 Parameter sensitivity ranking
[T
- .. Z z Local Analysis Global Analysis
qaa' N Sobol Index ~ Total Effect Index
g 40 b v Parameter
g * A w el Rank Sy Rank Sy Rank
g 0 a 83.69 1 00894 2 02806 2
~ B 25.82 5 0.0410 4 0.1451 5
20¢ b% 2431 6 0.0379 5 0.0962 7
n 19.10 8 0.0339 7 0.0930 8
10 5, 4.78 12 0.0288 9 0.0151 12
o, 30.35 4 0.0308 8 0.2781 3
o . S = a 1 {s 80.91 2 0.2803 1 0.6486 1
50 0 50 q 13.16 9 0.0377 6 0.0583 10
ol the middl p 42.54 3 0.0255 10 0.0891 6
Percentage change from base value atthe muddle " 2427 7 0.0449 3 0.1928 4
Sy 10.49 11 0.0234 12 0.0574 11
Fig. 4 Spider diagram generated by the one-factor-at-a-time N 12.73 10 0.0238 11 0.0742 9

method
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In this way one can define inductively eﬂillv...,is(xil,-~-,xis) for structures, it is decided that acceptable ranges for the remaining
any subset of variableg; ,---,x; with indices I=i;<---<iy 12 parameters aresix<0.1, 0.558<1.5, —0.3<y=<0.5, O<n
<n. Furthermore. let ! s <3, 0=<4,<0.05, 0<9,<0.3, 0. (<1, Osq$0.3,_(_)§p§5,
' ' 0=<¢=0.2, 0= 6,<0.01, and &\=1. The Sobol sensitivity index
) ) of the system response with respect to each of the parameter is
D= f(x)dx—fy (34)  evaluated through Monte Carlo simulations. In contrast to local
! analysis, no base values need to be specified. The “total effect”
5 index associated with each parameter is also calculated. Even with
Dil,---,is:f f fi i X Jdxi - -dxi . (35)  a streamlined program, the computation of the total sensitivity
1® indices often requires long run-time. The various indices are col-
It has been established by Sobol that, under the assumptior thégcted together in Table 2.

. X - e .
is uniformly distributed ini”, the quantity 4.3 Discussion of Results. It is observed from Table 2 that

S ..;i=D; .., ID (36) the ranking generated by the local sensitivity analysis largely
rovs s agrees with that by global analysis. In addition, the ranking gen-
is a measure of the global sensitivity of the functibfx) with erated by the Sobol indiceS, closely matches that by the total

respect to the group of variables, -+, x; . The quantityS; ...;  sensitivity indicesS],. This might suggest that interactions among

is termed a Sobol sensitivity index. It can be proved that various parameters are not significant over the range specified.
N Both the local and global methods indicate thaand ¢ are the
most sensitive parameters. On the other hahd,s,, and\ are

2 Sl"“'iS:; Si+2 1<i2<j<n Syt Sz =1 probably the least sensitive parameters. None of the unspecified

37) parameters in the classical Bouc-Wen model are insensitive. The
variation of an insensitive parameter would not appreciably
In other words, the sum over all the different groups of indices tshange the system response. It would not appreciably alter the
one. There is a total™2-1 Sobol indices forf(x). All the inte- hysteresis loops. Perhaps the values of these insensitive parameter
grals in the Sobol indices can be evaluated by Monte Carlo simshould be fixed, thereby simplifying the differential model of hys-
lations,[16]. The amount of computational effort can be substaneresis.
tial if n is large. To speed up the convergence of Monte Carlo As an illustration, consider the shear wall used previously in
integration, probably the most effective way is to use quassensitivity analysis. With the exception 6f, let all other param-
random numbers|[17], instead of pseudo-random numbers foeters take the base values specified earlier in the one-factor-at-a-
choosing the samples. Other variance reduction schemes suchirae analysis. Let, take the values 0, 0.05, and 0.1 successively.
antithetic variates[18], may also be employed. In this paper]t is observed that the first two values are, respectively, the lower
Latin hypercube sampling,19], is used instead of the crudeand upper limits of the range af, specified in global analysis.
Monte Carlo sampling. As a result, the sampling size is generalfthe third value is even outside the range. The system response
reduced to about one third of the original size. corresponding to these three values&fis computed, and the
Based upon the development of Sobol, Homma and S42€]i displacementi of the shear wall is plotted in Fig. 5. The solid line
have introduced another set of sensitivity indices to measure tigeassociated withs,=0, the dashed line witts,=0.05, and the
mutual interactions of parameters. A given parameteran inter- - dash-dotted withs,=0.1. One can see that there is little differ-
act with other parameters in groups of two, three, or more merance in the three system displacements. It therefore seems feasible
bers. In view of Eq(37), the “total effect” index with respect to to fix §, at, say, the midrange value of 0.025.
X; is defined as Information on parameter sensitivity is particularly valuable in
system identification and system optimization. In these areas cer-
ST=1— E S .. (38) tain error functional is minimized. A sensitive parameter far away
! eI from its sought-after value will generally cause an appreciable
. . . increase in the error functional. As a result, convergence can be
where the sum is over aTII the different groups of indices that dgcelerated with various numerical schemes. On the other hand,
not includej. The indexS; provides a measure of the total sensian insensitive parameter tends to drift around its sought-after
tivity with respect tox; , which includes its interactions with otheryajye since changes in its value contribute little to the error func-
model parameters. A scheme has been develd@d], for the tional. This could cause many problems in convergence. Clearly,
calculation of the “total effect” indices that economizes on corgreat simplification results if the insensitive parameters can be
memory and computing time. Both the Sobol indgxand the fixed. It must be emphasized that global sensitivity ranking relies
total sensitivity indexS| will be computed in this paper. appreciably on the range of variation of each parameter. Over the
There are, of course, other competing methods for global seange specifieds,, 5,, and\ are rather insensitive parameters.
sitivity analysis,[21,27). These alternative methods are all basehis observation should be reassessed for a different range of
upon the conditional variances of model output. Among them, tivariation.
Fourier amplitude sensitivity te$FAST) is considered the most
elegant. However, it has been shown that FAST and Sobol indices .
generate nearly identical sensitivity ranking in a number of te§t Conclusions
cases[23]. The Sobol sensitivity indices are generally superior to The extended Bouc-Wen differential model is one of the most
FAST and other global sensitivity indices in that the singlewidely accepted phenomenological models of hysteresis in me-
parameter indice§; and multiparameter indiceS;, ...;_ can be chanics. It is routinely used in the characterization of nonlinear
represented by the same E§6) and they can also be calculateddamping and in system identification. In this model the restoring
in a similar fashion. force and system displacement are connected through a nonlinear
In reporting the results of global sensitivity analysis, the sandfferential equation containing unspecified parameters. By choos-
shear wall described earlier will again be used. Recall that tig the parameters suitably, it is possible to generate a large vari-
shear wall has a natural frequenéy=3.6 Hz, damping factor ety of different shapes of the hysteresis loops. The classical Bouc-
£{=0.02, and is driven by the scaled E-W component of the 1940en model contains only five control parameters. The generalized
El Centro earthquake over a duration of 10 seconds. Recall tldifferential model in its present form contains 13 parameters; it
the value ofA is fixed at 1 by transformatiofil5). After an ex- can account for strength degradation, stiffness degradation, and
amination of the large amount of experimental data on woaglen pinching characteristics of an inelastic structure. In this pa-
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per, the differential model of hysteresis has been carefully reest the chosen excitation. Among other things, it is hoped that the
amined. Mathematical transformations have been devised present paper would point to directions along which further re-
freeze one of the unspecified parameters without affecting thearch efforts to refine the differential model can be profitably
system response. Local and global sensitivity analyses have begsade. It appears feasible, for example, to determine if energy
conducted to assess the relative sensitivity of each control paradiissipation should indeed be separated additively into an elastic
eter. The various parameters have been ranked in order of decreast hysteretic component. Perhaps there is an even closer repre-
ing sensitivity with three different methods. Although a limited sesentation of reality if the total energy is divided according to a
of data is presented, extensive numerical calculations have bgenver law. As the differential model of hysteresis becomes in-
performed by the authors to support any qualitative results heretmeasingly popular in theory and applications, the update reported
For example, in global analysis sensitivity indices with respect to this paper will hopefully allow it to be used with added confi-

a group of two or more parameters are not reported because thdeace in the years to come.

are 22— 1—12=4083 such indices. Major findings are summa-
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ades. s suier | Frictional Collapse of Granular

Koiter Institute Delft,

Faculty of Aerospace Engineering, Asse m h I i es

Delft University of Technology,

P.0. Box 5058,

2600 GB Delft, The Netherlands The frictional collapse of an assembly of equisized spheres is studied by a discrete ele-
ment model. The macroscopic constitutive response is determined as a function of the

Norman A. Fleck level of Coulomb friction between particles. It is found that the level of Coulomb friction

Cambridge Center for Micromechanics, has a strong effect upon the relative proportion of sliding and rolling between particles,
Department of Enginegring, and consequently upon the macroscopic strength of the granular assembly. The discrete
Cambridge University, element predictions are shown to be in good agreement with experimental results obtained
Trumpington Street, from triaxial tests on an aggregate of steel spheres. It is demonstrated that the shape of
Cambridge CB2 1PZ, UK the collapse surface can be adequately represented by the Lade-Duncan continuum

model.[DOI: 10.1115/1.1753266
1 Introduction spheres. Furthermore, to reveal the degree of local particle rear-

. . . . rangement by sliding and rotation, the assembly of discrete par-
elesnlwnecri tr:g d%lglljelzelcl;]gh;\:/oe”?)g;r?ugdﬁ:;??ci iggﬁdg’i:'sg:t;e_ticles is subjected to three different kinematic conditidids:both
pop yzing article sliding and particle rotation are allowed to ocgy,par-

Ezhagci/llocskt]irta?jtigslsftcl)ccs sfogrzcgﬁrmggﬁéﬂf; z(rat?élefoéoﬁ)f(iamr |_%1e sliding is permitted, but particle rotation is prevented, é8)d
N u u P 9Urdarticle sliding is allowed to occur in accordance with an affine

Elt:)ns,hvvthered_the pr;lrtlclleg_ are trep:esent;ad b){ C|rcukllar d'SKS‘. eformation field, while particle rotation is prevented. Finally, the
though two-dimensional discrete element analyses have provi lapse surface is computed in the deviatoric plane of principal
insight into the mechanical response of particle assemblies, thsq

are of Iimiteo_l value in simulating the behavio_r of advanc_ed Iab(h]yets;;zzfifbgrgggﬁgﬁg? ;RZSt:rsaeﬂ?;mensmnal granular assem
ratory experiments. The response to complicated loading pat 3’

such as those applied to a granular material in a true triaxial ap-

paratus,[10,11}, can only be adequately simulated by means of paicle Assembly Simulated by Discrete Element
three-dimensional numerical analyses.

Apart from the direct simulation of laboratory tests, three'-vIOdeI
dimensional discrete element analyses are useful for the developThe mechanical behavior of a three-dimensional assembly of
ment and verification of continuum models of granular compaelastic-frictional particles is studied by employing the discrete el-
tion and flow. The use of macroscopic stress and strain measueasent program Particle Flow Cod®FQ.! In this discrete ele-
to characterize the deformation state of a granular assemblym&nt program, the system of equations describing the dynamic
valid provided the representative volume element contains a sirfteraction of an assembly of spherical particles is solved by using
ficiently large number of particles; under such conditions, the us@ explicit time-stepping scheme; at each time step the change in
of average macroscopic variables with a continuum constitutivke interparticle forces is computed from the relative velocities at
law leads to major advantages in computational economy cothe particle contacts via the incremental force-displacement rela-
pared with the discrete element method. tion for each contact. After updating the interparticle forces, the

Various micromechanical models have been derived by hnew out-of-balance force at each particle contact is determined
mogenisation of microstructural particle interactiofi?—19, al- and used to calculate the new translational and rotational particle
though checks on their accuracy by comparison with experimerascelerations from Newton's law of motion. Integration of the
and with discrete element simulations are lacking. Typically, thearticle accelerations provides the particle velocities and thereby
micromechanical descriptions are based on upper and lowke particle displacements. The particle displacements give the
bounds of the true response. For example, the assumption of “abw particle positions, after which, by using the updated veloci-
fine deformation” gives an approximation for the deformation &ties at the particle contacts, the procedure is repeated. Checks are
the particle contact level in terms of the imposed macroscoptarried out to determine if contacts have become established or
strain field over the particle assembly. This kinematic assumptitiave ceased to exist. The normal force versus overlap contact law
is often made in the homogenization of granular mater[dl8- obeys the well-known Hertzian theory; see, for exam@b]. The
16,20,23, and commonly results in an overprediction of the maaontact is either fully stickingwith the tangential stiffness set by
roscopic strength and stiffne§22—24. the contact argaor undergoes full slip in accordance with the

In this paper the discrete element method is used to study t@eulomb friction criterion
frictional behavior of three-dimensional particle assemblies. The c c c
macroscopic constitutive response under axisymmetric stress con- [fil=—fitans 1)

ditions is determined as a function of the level of Coulomb fricyneref¢ is the normal contact forcdS is the shear contact force,
tion between particles. These predictions are compared 0 expefiy 4¢ is the friction angle at the particle contact Since the
mental results obtained from triaxial tests on an aggregate of Stﬁﬁﬂicle contacts are supposed to have no resistance against ten-

Comributed by the Abpiied Mechanics Division ofiE A . sion, the normal and shear contact forces are set to zero if the
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zZ, 3,<3,=3%3<0. Here,%,, X,, and 35 denote the principal
stresses in the longitudinal direction,, and the transverse direc-
T tions of the specimerx, and x3, respectively. Stress measures
pX that are commonly employed for describing the mechanical be-

2
, / havior of isotropic particle assemblies are the deviatoric stress
(invarian) 39" (also known as the “von Mises stregsand the
s -~ hydrostatic stresénvariany 3™, given by

3<S—_ -

- "..»‘-Y'A";“} d 3 AN}

99 Spd B PP =N 3

-~ )
PRSI 2, (5)
TS s e L
/ »~ e - 2 Y r=§Ekk.

z

Here and below, a repeated suffix denotes summatiorﬁéjné
the deviatoric stress tensor accordingtp=3;; —3™%s;; , with
b Cuboidal volume L x L x L 8 the well-known Kronecker delta symbol. The stress measures
filled with particles of radius r 3% and %™ are work conjugates to the deviatoric strain rate

. : . ) E%" and volumetric strain ratg", respectively, where
Fig. 1 Cuboidal volume LXLXL of equi-sized spheres with

radius r, subjected to principal stresses  X;, 3,, and 3 . 2. .
E%= /5 E/E]
3

6
less otherwise stated. Atrain-controlled loading path is pre- Evol— g ©
scribed by moving the outer walls of the cube towards each other, kk ) _
where the relative wall velocity*® is related to the average and Ej; is the deviatoric strain rate tensor given By;=E;
macroscopic deformation rate of the assemaly, by —1/3E"°'5ij . For an axisymmetric stress configuration, E§)

- wall & simplifies to
U =Byl 2
. . . . . zdev:|21723|
with L; the relative position between points on two opposite faces ©)
of the cube. The normal contact stiffness at the walls is chosen to 1
be sufficiently high, such that the walls act as “rigid” objects. The Ehyd’=§ (21+2%5)
tangential contact stiffness at the walls is set to zero, i.e., the
boundary particles may freely slide along the walls. and the corresponding strain rates, ), simplify to
In order to minimize the inertia forces in a quasi-static analysis,
the wall velocity needs to be relatively small. Accordingly, the Edev:E“'E —E |
number of discrete time steps required for reaching a macroscopic 3=t = 8
deviatoric strain of 5% is specified to lay between>X1®° and ol : . ®)
1.6x 10°. Additional checks have shown that for a selected par- EW=E,+2E;

ticle density of 2650 kg/fthis number of time-steps leads to
negligibly small inertia forces. Atress-controlledoading path is \{erse strain rate
A .

prescribed by means of a servo-control algorithm, which adju STwo different particle sizes are considered; particles with a ra-

the wall velocitiesuiwa" to reduce the error between the measureg,sr =0.05. (cuboidal volume of 1145 particlesand particles
stressEij and the desired stre%ﬂ-es. This servo-control algo- with a radiusr=0.029_ (cuboidal volume of 9167 particlgs
rithm has the form wherelL is the length of the sides of the cuboidal volume, see also
UWa"zg-(2~—E-d-e 3) Fig. 1. After genergtion o_f the discrete particle assembly, a con-
: e = fining pressuré& ®"fis applied onto the outer walls of the cuboidal
whereg; is the gain, whose appropriate values have been deteolume, thereby invoking the servo-control algorithm, E8).
mined by trial and error. The Cauchy streSg represents the During application of the confining pressure, a small amount of

spatial average over a so-called “measurement sphere,” andirigerparticle friction is introducedg®= 14 deg) in order to reduce

WhereI-El is the longitudinal strain rate, anﬂ,,(: Ez) is the trans-

determined by using the well-known expressjd2,17,18,2T the time necessary to satisfy the convergence criterion
C
1 3. — 3 des
S =gy 2, (FIF+ D) @ S <A with i<{123 ©)
1

whereV is the yolume of the_ measurement sphe3as th? otal -\ here the tolerancg is set to 5. 10" 3. Note that the conver-
number of particle contacts in the measurement sphu&ne,t_he gence criterion includes all three principal stresses.
branch vector that connects the centers of two neighboring par-Three different confining pressures are considered, which in
ticles in contact, and; is the contact force at contact.” The  terms of the particle shear modul@?" are: 3,°"/GPat= — 2 5
center of the measurement sphere corresponds to the center ofithgy 6 —5.0x 107 ¢ and—7.5x 10 ¢. These ratios reflect a par-
cuboidal volgme, and the d!ameter of the measurement sphﬁaee system that is close to thegid-sphere |imit(2conf/Gpart
equals the width of the cuboidal volume. =0). The porosityp of the granular specimen after application of
2.1 Convergence Study for Effective Medium Calculation the confining pressurg "/GP"= —5.0x 10 ® is 0.382. For the
In the discrete element model, a sufficiently large number of psgonfining pressurest®"/GP¥"= —2.5x10°® and —7.5x10°
ticles needs to be determined for mimicking the response oftl2€ initial porosity is slightly higher and lower, respectively. The
continuum. This is done by analyzing the response of a cuboidzrticle shear modulus and Poisson’s ratio are takerGR¥
volume of equi-sized spherical particle®@ften called a “mono- =20 GPA andvP®=0.20, respectively. When the particle system
disperse packing,128]), loaded inaxisymmetric compressipn has achieved equilibrium with the confining presstire. Eq.(9)
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(a) Fig. 3 Deformation characteristics under axisymmetric com-
1.0 T T T T pression; three confining pressures: 3 confy GPat=—2 5x 1078,
—5.0X107% and —7.5X107° (contact friction angle  ¢°=24 deg,
5 particle radius r=0.025L)
2 08¢
n 2GRN = 7.5x10°
5 conf part -6 5 .
06t /G = -5.0x10 i laboratory tests on relatively coarse, noncohesive granular mate-
' Z"°"f/Gpart =-2.5x10° rials, [29], with the actual sequence of local stick-slip events be-
L=] tween particles depending upon the initial compaction level of the
‘@ 04 material. The smoothness of the individual curves depicted in Fig.
@ 2(b) indicate that the discrete system withL =0.025 responds
® oo like a continuum.
h The strain respons@measured after the initial confining pres-
r/L=0.025 sure was appliedis shown in Fig. 3 for the aggregate of small
0.0 . . A 5 particles ¢/L=0.025). It can be seen that the response is identi-
0.00 0.01 0.02 0.03 0.04 0.05 cal for the three confining pressures considered and that propor-
. . . dev tional straining is achieved when the deviatoric strain exceeds 2%.
Deviatoric strain E

(b)

Fig. 2 Stress-strain response under axisymmetric compres-

sion; three confining pressures: 3"/ GPat=

—2.5X107°

, —5.0

2.2 Influence of Contact Friction Angle Upon Macroscopic
Response. The influence of the contact friction ang§¢ on the
response is examined by simulating an axisymmetric compression
test on a cuboidal volume of small particles,. = 0.025. Four sets

X107% and —7.5X 1078 (contact friction angle  ¢°=24 deg). (a)
Particle radius r=0.05L. (b) Particle radius r=0.025L.

of simulations were performed, witlp°=4 deg, ¢°=14 deg,
¢$°=24 deg, and¢$®=34 deg. The specimen preparation and

loading procedure are similar to those outlined in the previous

section.

In each simulation the confining pressure was set at

is satisfiedl, the initial contact friction angle is incremented to thes ©°"/GPa'= —5.0x 10" °, corresponding to an initial porosity of
actual contact friction angle, which here equafs=24 deg. Sub- p=0.382. Figure 4 depicts the macroscopic stress-strain curves

sequently, strain-controlled axial shortening is appligdcorre-
spondence with Eq(2)) at fixed confining pressure. Loading is
terminated when the deviatoric strain has attained the vafie
=5%: this value is considered to be the limit of applicability of
small strain theory.

In Figs. 2a) and 2b) the evolution of the stress ratio 5

—3.dey3hydr is plotted against the deviatoric straif®, for the <,
particle radiir/L=0.05 andr/L=0.025, respectively. The maxi- =~
mum stress level is reached at a deviatoric strain of apprommat(u
2%, and shows only a mild difference in magnitude for the tw %l
cases considered. After reaching the maximum stress level, -
stress remains almost constant under increasing deformation, i
steady-state collapse occurs. In both figures, the normaliz
stress-strain relations are independent of the level of confinil
pressure, implying that the collapse value of macroscopic devi
toric stress increases in proportion to the macroscopic hydroste
pressure. The small differences between the individual stre:
strain curves are driven by bifurcations of particle equilibriun
states. If, for two granular samples, the initial characteristics at tl
particle level differ only slightly(associated with different initial
confining pressurgsthe equilibrium path to be followed will be

2t

—— Particle rotation
— No particle rotation

¢c = 240 ¢c =

L
I
g 1 ,«—::::::::::é—::: :g::::r;
e ]
g |yi-——"" N
0] v/ ______3( _____
e AN ° o
o lLr =4 . oT=40 =14
0.00 0.01 0.02 0.03 0.04 0.05

Deviatoric strain E%"

different; this effect is more pronounced at the macroscopic leviely. 4 Stress-strain response under axisymmetric compres-

when the representative volume contains a smaller number of pgibn; the contact friction angles are:

$°=4 deg, 14 deg, 24 deg,

ticles, see Figs.(2) and Zb). Similar bifurcations are observed inand 34 deg. Unconstrained and constrained particle rotation.
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for the various contact friction angles considered. The ultima 1.0 =
collapse level increases for an increasing contact friction ang.r;
The results of simulations with particle rotation prevented are il ;-
cluded in the figure, and will be discussed in more detail in tk
subsequent section. .

In order to elaborate upon the macroscopic collapse behavior
is instructive to introduce the following set of internal state vark
ables for the particle assembly: tiséiding contact fraction s,
defined by the ratio of the number of sliding contacts to the tot
number of contacts in the particle assembly, terdination
number n which is theaveragenumber of contacts per particle, @
and theporosity p which equals the ratio of the void volume to-%
the total volume occupied by the particle assembly. The steacg
state values of the parametdi=®., the values aE%"'=5%) are 0.0 .
plotted in Figs. Ba) to 5(c) as a function of the contact friction 0 10 20 30 40
angle ¢°. The initial value ofp (after the confining pressure has
been applied but witlE%=0%) is included in Fig. &), and is
represented by the dashed line. The plots contain results for 1 (@
constrained particle rotation and for full constraint against partic
rotation; in each case the relative sliding of particles can occur 6 . . .
accordance with the Coulomb friction law, Ed@).

Consider first the sliding contact fractien, as shown in Fig.
5(a). At steady-state collapse the number of sliding contacts d
creases with increasing contact friction angle, which reflects
increase of the macroscopic strength. At the highest contact fr
tion angle consideredp®=34 deg, only about 10% of the total
number of particle contacts is sliding, indicating that rolling o
particles dominates. Both for constrained and unconstrained p
ticle rotations the sliding contact fraction approaches zero in tl
limit of infinite contact friction; i.e. s;—0 when¢°—90 deg. In
the limit of frictionless particlesp°— 0 deg, the sliding contact
fraction for constrained and unconstrained particle rotatiot
should also be identical, since the deformation mechanism by p
ticle rolling becomes inactive for particles with ideally smoott 2 :
contact surfaces. The sliding contact fractignis expected to 0 10 20 30 40
approach 1.0 when®— 0 deg, and the anticipated trends toward I, c
e e bocn indieated i Fig(® by the dashed lines, The Contact friction angle ¢~ [degrees]
limiting value of unity can be explained by recalling that the slid (b)
ing contact fractions plotted in Fig(® reflect systems of nearly
rigid particles that are imeutral mechanical equilibriunti.e., a 0.42 ‘
particle system that is on the verge of instability, as indicated ——= Initial porosity
Fig. 4 by the horizontal tangential slope of the stress-strain curv o, || ~*~ Steady-state porosity, particle rotation
at E%®'=5%). For a system of rigid frictionless particles, a state ¢ ' —o— Steady-state porosity, no particle rotation
neutral mechanical equilibrium can be reached under isotrof s
loading conditions, where a network of normal contact forces a 0.40
established that keeps the particle assembly just stable. When .
particle system is subsequently subjected to a small deviato G
loading perturbation, all particle chains inside the contacts ne¢
work will immediately collapse since the tangential resistance
every particle contact is equal to zero. Hence, all particle conta 0.38 |
will be subjected to sliding, and thiss=1.0. Since this collapse )
mechanism corresponds to zero macroscopic shear strength,
difficult, if not impossible, to adequately simulate it by means of 0.37 " " "
discrete element analysis. 0 10 20 30 40

As pointed out in30], a minimumaverage coordination num-
ber is geometrically required in order to construct a system
rigid spherical particles that is in a state of neutral equilibriur
Packing structures corresponding to a minimum average coorui-
nation r_lumbe_r are ;ometi_mes Cal.ISdStati(.: packings[S_l]_. F_or a Fig. 5 Influence of contact friction angle $° on macroscopic
three-dimensional isostatic packing of rigid, equi-siZédtion- jnternal state variables  (for unconstrained and constrained par-
lessspheres, théminimum) coordination number is equal to 6, ticle rotation ). (a) Sliding contact fraction s at steady-state col-

[30]. This value is recovered by extrapolating the curves for umapse (E%'=5%). (b) Coordination number 1 at steady-state
constrained and constrained particle rotation in Fifp) 5owards collapse. (c) Porosity p at initial state (dashed line ) and at
¢°=0deg. For a three-dimensional isostatic packing of rigicteady-state collapse (solid line ).

equi-sizedfrictional spheres which undergo no relative slip, the

(minimum) coordination number is equal to [82]. Again, in Fig. rotation is expected to approach zero in the limit of infinite con-
5(b) this appears to be the asymptotic limit to which the curve fdact friction. This can be explained as follows. As discussed in
the unconstrained particle rotation decreases under increadifig], the minimum coordination number necessary for geometrical
contact friction. In contrast, the curve for constrained particlstability of a particle structure is directly related to the number
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—o— No particle rotation
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Fig. 6 Deformation characteristics under axisymmetric com-
pression; the contact friction angles are: $°=4deg, 14 deg, 24  Fig. 7 Contact friction angle ¢ versus macroscopic friction
deg, and 34 deg angle ¢ and dilatancy angle  at steady-state collapse (E%"
=5%)

of internal degrees of freedom of the particle structure. An in-
crease in contact friction leads to an increasing constraint on inter-
particle sliding, whereby in the limit of infinite contact friction theof particle rotation causes steady-state collapse to be attained at a
internal degrees-of-freedom related to inter-particle sliding bemaller strain level, and the overall response becomes smoother.
come fully constrained. The prevention of both inter-particle slid- The prevention of particle rotation can be interpreted as a kine-
ing and rolling turns the granular assembly into a rigid body witmatic constraint that increases the shear strength of the granular
infinite shear strength and shear stiffness. Towards this limit casssembly[3,6,33. In support of this line of reasoning, granular
the sliding contact fraction approaches zese»0; thus, most of materials comprising angular-shaped partidebich experience
the particles in the system will be “floating(i.e., these particles restricted particle rotation due to interparticle locKingsually
do not transmit quasi-static forces to neighboring particléee have a higher macroscopic shear strength at a given confining
minimum coordination number then approaches zero because piessure than granular materials comprising round parti3ds,
infinite sample strength will be determined by a stable, rigid net- Figure 7 shows the relation between the contact friction angle
work of only a small number of contacting particles. ¢° and the macroscopic friction angde as computed by mapping

For the case of unconstrained particle rotation, curves withtide responses in Fig. 4 B®'=5% (=steady-state collapsento
trend similar to that in Fig. ®) were reported ii31]. Neverthe- the Drucker-Prager criterion
less, the particle systems of equi-sized spheres studi¢@1in

were obtained directly after particle deposition, which resulted in doy, BSiNg

moderately stable packings with coordination numbers that are F=3%% mz Y¥=0. (10)
somewhat higherbetween 4.5 and 6)2than the coordination

numbers for isostatic packings of rigid spherg,32. Under axisymmetric compression, the Drucker-Prager criterion re-

When considering the dependence of the poropitgt E?®  flects the same macroscopic friction angle as the Mohr-Coulomb
=59% upon the contact friction anglg®, see Fig. &), it appears hexagonal surface,
that p increases slightly under increasingf. Combining this 3 dev
curve with the initial porosityp=0.382, it follows that for the _ < nyar. dev : ™ LA
lowest friction angle,$®=4 deg, the granular assembly with un-F_E "sin g+ ?E sinj 6+ 3 * 3 COE( o+ §) sin$=0
constrained particle rotation compacts, and for greater friction (11)
angles it dilates. This is also evident from the deformation char- . o
acteristics plotted in Fig. 6, where the compactive and dilatiyhered is the angle of similarity,
behaviors are illustrated by a monotonically decreasing volumet-
ric strain (E*°'<0) and a monotonically rising volumetric strain cos W= 2_7 Js with 0= @< Z_ (12)
(E¥°'>0), respectively. A trend similar to that in Fig. 6 has been 2 (393 3
reported in[4] for the case of two-dimensional discrete element . . . . . . .
computations on an aggregate of circular discs under bi-axiaf"® Js iS the third deviatoric stress invariant given by
loading. The results shown in Figs. 5 and 6 taken together havexik>k;=ji/3. Under axisymmetric compressiofi=/3 and Eq.
the following physical interpretation: a#¢ increases, the aggre- (11) reduces to Eq(10). Figure 7 clearly shows that for a higher
gate deformation at steady-state collapse becomes predomin&@gfact friction angle the difference in macroscopic strength for
by the rolling of particles past each other, and this results in4pconstrained and constrained particle rotation becomes larger,
dilated structure with a co-ordination number approaching ti@dicating that the mechanism of particle rolling becomes increas-

minimum co-ordination number for a frictional isostatic packingin@!y important. As discussed in Section 2.2., the macroscopic
shear strength for the assembly with constrained particle rotation

2.3 Influence of Particle Rotation Upon Macroscopic Re- is expected to become infinitely large when the contact friction
sponse. In order to explore the influence of particle rotatiorapproaches infinity. In contrast, for the case of unconstrained par-
upon the macroscopic collapse response, the stress-strain cutigs rotation, the macroscopic friction angle for the assembly with
for the cases where particle rotation is prevented are now commconstrained particle rotation asymptotegte24° with increas-
pared to those where particle rotation is permitted, see Fig. 4.ing contact friction. In the no-sliding limit the particles are still
can be seen that the deviatoric strength increases by a factombfe to roll, and therefore the macroscopic friction angle remains
two to three when particle rotation is prevented. Also, preventidimite. It has already been suggested above that the macroscopic
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Fig. 8 Deformation characteristics under axisymmetric com- L c

pression; the contact friction angles are:  ¢°=4 deg, 14 deg, 24 Contact friction angle ¢~ [degrees]

deg, and 34 deg. Constrained particle rotation.
Fig. 9 Contact friction angle  ¢° versus macroscopic friction
angle ¢. DEM versus experimental results  (triaxial tests on an

shear strength is zero in the limit of vanishing contact frictiogggregate of steel spheres ).

angle. This anticipated trend at vanishing contact friction is des-

ignated in Fig. 7 by the dashed lines.

The prevention of particle rotation also leads to an increase wfacroscopic friction ang)ewill be very small. The sample of
the sliding contact fraction at collapse, see Fig)5This can be steel spheres was subjected to triaxial compression in three states
explained by the fact that prevention of particle rolling require® investigate the influence of particle contact friction: copper-
more particle contacts to slide in order to attain the same level ebated sphereg@s-received statespheres lubricated with PTFE
macroscopic deformation. Additionally, the prevention of particléolytetrafluorethylenespray, and braze-coated spheres. The ini-
rotation yields a lower coordination numbéFig. 5b)) and a tial porosity of the samples was between 0.388 and 0.402, which
higher porosity(Fig. 5(c)) at steady-state collapse. Thus, the pres close to the initial porosity of the discrete element model
vention of particle rotation leads to a strongly dilatant materig0.382. The tests involved a measurement of the steady-state
behavior, as depicted in Fig. 8. In Figs. 6 and 8, the ratio ehacroscopic friction angleb by fitting the Mohr-Coulomb col-
volumetric strain rateEY® to deviatoric strain rat&%" at E% lapse law, Eq(11), to the triaxial data, and a direct measurement
=5% defines the steady-state macroscopic dilatancy apgls- ©f the inter-particle friction between two steel sphefwhich pro-

sociated with the flow potentidb, wheré vides the contact friction anglé®). The triaxial tests follow the
. method described if85], and were performed at a relatively low
G=>dev 6 siny s hydr (13) confining pressuréat about 0.1 MPgin order to obtain a particle
3—siny ’ system that is close to the rigid-sphere limit.

Note that the above Drucker-Prager flow potential in stress spaqé?eedmea:.ureg rr;ataro;c;o%lgne]mg ;nc'lcro.fﬁot%'g fcrillctlogt ang!eelf]:nrte
equals the Drucker-Prager collapse criterion given by @@) P d n 'gﬁ » and Ir npared wit d Ilscrf € B

when the dilatancy anglé is replaced by the friction angl¢. As predictions where particle rotation Is permitted, taken from Fig. 7.
usual, the direction of plastic flow is obtained by taking the stre;@e predicted response is in excellent agreement with the experi-

derivative of the flow potentia. The dependence of the macro_mental results. Both the discrete element method and the experi-

scopic dilatancyy upon the contact friction angle® has been ments reveal that the macroscopic friction angleexceeds the
it c c o C i
included in Fig. 7. It is clear that the macroscopic dilatancy angFeom"j‘Ct friction angle” for ¢ less than about 21°. Ag" in

is consistently less than the macroscopic friction angle, implyinI s;saessgsthgngl?et\'/\gspg?ﬂ?]rgg?ugf inter-particle rolling to sliding
“nonassociated plastic flow.” ' :

2.4 Comparison of Discrete Element Simulations With 2.5 Influence of Particle Redistribution Upon Macroscopic
Triaxial Tests on an Aggregate of Steel Spheres.A set of tri- Response. The effect of particle redistribution upon the macro-
axial tests on an aggregate of steel spheres has been perfor&Rapic stress level can be elucidated by successively subjecting
recently by Davy and Fleckprivate communicationin order to the discrete granular assembly in Fig. 1 to three different kine-
explore experimentally the dependence of the steady-state madrgtic conditionsi(1) particle sliding and particle rotation are al-
scopic friction angle upon the contact friction angle of théowed to occur(2) particle sliding is allowed to occur, but particle
spheres. A circular cylindrical sample of 50 mm diameter by 5®tation is prevented(3) particle sliding is allowed to occur in
mm height was constructed, using spheres of approximately 4@ecordance with an affine deformation field, and particle rotation
mm in diameter. The aspect ratio of the granular specimen thigsprevented. For the casé$) and (2), the essential boundary
equals 1, and is equal to that of the discrete element model. T¢nditions are imposed onto the outer walls of the particle assem-
ratio of the sphere radius to the specimen diameter is 0.045. Aly, see Eq.(2). In contrast, casg3) requires the translational
though this relative particle size is somewhat bigger than that useglocity u; of all particles to be prescribed, according to
in the discrete element simulations'I{ =0.025), from Figs. &) — v
and(b) it is expected that in the range 0.625/L <0.05 the effect Ui = EijX; (14)

of particle size on steady-state sample strer(gihsteady-state whereE;; is the uniform, macroscopic strain rate agdare the

coordinates of the particle center.

%Although in the discrete element model the macroscopic strain rate is composedj the discrete element simulations. the contact friction angle
of elastic and permanent components, at 5% deviatoric strain the elastic strain rate is !

c_ e - onf_ __
much smaller than the total strain rate. Hence, it is expected that the flow directiorﬁgu%lg‘ﬁ _t24 deg, the _'mt'al c.onfl.nlng pressure 35°"= —2.5
not greatly in error when computed by using the values for the total strain rate. X 10~ °GP2"and the particle radius is=0.029.. Two extremes of
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Fig. 10 Influence of particle rotation and particle rearrange- Fig. 11 Collapse contour in deviatoric plane  (contact friction
ment (=24 deg) for prescribed deformation paths. ~ (a) Volu-  angle ¢°=24 deg). (a) DEM with unconstrained and con-
metric deformation  (Ejy=Ez= Egs). (b) Deviatoric deformation strained particle rotation.  (b) DEM versus Lade-Duncan model,

(Epy=—12E=—1/2Es,). Mohr-Coulomb model and Drucker-Prager model  (macroscopic
friction angle ¢=19 deg).

) ) ) computed by means dfue triaxial tests wherein the three prin-
deformation path have been exploredhlumetric deformation cipal stresses depicted in Fig. 1 are varied independently. By

whereE ;= E,,= E33 (andE,,= E,3= E3;=0) anddeviatoric de- keeping the hydrpstatic_ pressure, Es(b)), at a constant value, a
formation where Ey;= — 1/2E ,,= — 1/2E 55 (and Ej,=E,=E,, [l range of radial deviatoric stress paths is imposed, as param-
=0). For the volumetric deformation path, Fig.(aDsketches the €térized by the ratio

volumetric strain versus the normalized hydrostatic stress. It is 3,—3,
clear that the suppression of particle rotation hardly alters the b= with  0<b<1. (15)
macroscopic stress-strain curve. However, the introduction of an 31-23

afine deformation fied gives fise @ noticeable sifening, For 1 £q. (15, b=0 corresponds o riaxial compressiens dic
particle rearrangement upon the macroscopic stress level are m gsed In th_e previous s_ectl()nsvhlle b=1 porres_ponds to tri-
pronounced, see Fig. (). The effect of particle rotation appearsax'al extenS|on.. In the discrete element S|mulat|pns, j[he stress-
to strongly influence the stress magnitude, which is consistetntrolled loading paths, Eq15), are traced by invoking the
with the result in Fig. 4. Also, the large stress increase induced Bgrvo-control algorithm, Ed3). Again, a cuboidal volume is ran-
the affine deformation field suggests that substantial particle redpmly filled with 9167 spherical particles each of radius
rangements occur when particle rotation is permitted. =0.024.. The contact friction angle is assigned the valife=24

For the deViatOriC deformation path, Efjevzs% Steady-State deg and ’[he Confining pressure equﬁfgnf: —2.5X 10_GGpart.
collapse has been reached, and the macroscopic strengths afthe DEM collapse contours depicted in Fig. 11 have been com-
—xdeysvd'=0.94, 1.99, and 2.74 for the cases where particlgosed by computing the stress states that correspond to a devia-
rotation is permitted, particle rotation is prevented, and affine dgyic strain E9'=1%. The axes3}/Sdvie s7/sdevic gng
formation is ?pp'[?dv respectively. Hence, the assumption of "aég/zdevm represent the three principal deviatoric stresses normal-
fine deformation,” also known as théoigt approximationis not . d by th Mi t der triaxial IV
very realistic when homogenizing the mechanical behavior of aft > %Y divvor; 156S SIesS Under faxial Compressatl, -,
assembly of rotating particles; it would lead here to an overes}ken alE™'=1%. Figure 112) illustrates that the prevention of
mation of the macroscopic strength by a factor of 2.74/6.24. particle rotation provides the collapse contour with somewhat

sharper corners. Further, both for constrained and unconstrained

2.6 Collapse Contour in Deviatoric Plane. The collapse particle rotation the shear strength in triaxial compression is

contour in the deviatoric plane of the principal stress space hggher than in triaxial extension. This behavior is typical for non-
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cohesive granular materials such as sand, as observed experindgtknowledgments

tally, [10,11. In order to specify the collapse characteristics of . oo .

- e A.S.J.S. is grateful for the hospitality offered by the Cambridge
sand in the deviatoric plane, Lade and Duncan have proposed @eenter for Mi%:romechanics at tﬁe CtZ\mbridge E/Jniversity Ca?n-
following phenomenological collapse criteridr6], '

bridge, U. K., during an eight-month leave from the Delft Univer-

F=13—k.l3=0 (16) sity of Technology, Delft, The Netherlands. The authors are grate-
. . ful to Dr. Catherine Davy for the provision of triaxial test data for
wherel,, |5 are the stress invariants an aggregate of steel spheres. Both authors acknowledge the EU
|, =3shdr=3 support in the form of TMR and RTN grants ERB-4061-PL-95-

(17) 0988 and HPRN-CT-2002-00198.
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On Timoshenko Beams of
Rectangular Cross-Section

James R. Hutchinson

Professor Emeritus It was recently shown that the shear coefficient for a rectangular Timoshenko beam is
Department of Civil and Environmental highly dependent on the aspect ratio of the beam. This research investigates the reasons
Engineering, for that behavior by comparison of the Timoshenko beam solution with a new three-
University of California, dimensional solution for a simply supported beam. The new solution is a series solution
Davis, CA 95616 that converges to any desired accuracy. Comparisons are also made to both elementary
Life Mem. ASME and Mindlin plates. The Mindlin plate solution is in excellent agreement with the three-

dimensional solution for the simply supported case, and is used as a basis of comparison
for a free-free beam. It is found that a shear coefficient which would cause matching of the
three-dimensional and Mindlin solutions would have to be a function of the wave length
as well as the aspect ratio. Physical explanations are given for the high dependence on
aspect ratio and for the dependence on wave lengd©I: 10.1115/1.1751186

Introduction enko beam theory and the S-H coefficient. Because of that close

. . . correspondence, it was decided to look at the simply supported
In a recent paper, Hutchinsdf] derived a general expression, tangular beam.

for the shear coefficient in Timoshenko beams. In a discussion ofy} 4 only easy three-dimensional solution for the simply sup-

that paper Stephefi2] pointed out that he had derived the sam@rieq rectangular beam is for the plane stress case developed in
expression for the shear coefficient in an entirely different way ifef. [5]. It was found, however, that a new series solution could
1980, [3]. This particular shear coefficient will be referred to age developed for the simply supported case for which the order of
the S-H coefficient in this paper. In his discussion Stephen notede matrix would beN,+ N, . This solution could then be easily

“A further very interesting feature of1], Figs. 3 and 4, is the made to converge to any required accuracy and provides an ex-
possibility of the S-H coefficient taking on negative value focellent basis of comparison. Both the elementary plate and the
combination of large width-to-depth ratios and for large Poissonidindlin plate solutions were evaluated for the case of simple sup-
ratio. The effect of a negative coefficient would be to stiffen thports on the ends and free along the sides and compared with the
structure, leading to a natural frequency higher than that predictégee-dimensional solution and the Timoshenko beam solution. It
by Euler-Bernoulli theory. Nevertheless, the physical implicatiowas found that the Mindlin and three-dimensional solution agreed
of a possible negative coefficient requires further consideratior/®ry Well so that the Mindlin plate solution could be used as a
The purpose of this paper is to further investigate this interestifgSis of comparison for beams with other end support conditions.
phenomenon. The case of a beam with free ends was also investigated and

In Ref.[1], Timoshenko beam theory, using the S-H coefficienfx’rnparecj to the_ elgmentary anc_zl Mindlin plate solutions. The el-
was compared to a three-dimensional series solution of the g gémentary and Mindlin plate solutions for the completely free plate

. . Afe more complicated than that of the plate simply supported on
erning .equatlons. for the completely free peam. The Fhre vo opposite edges. A solution for the completely free Mindlin
dimensional solutlpn‘ was described in Hutchinson and ,Z'"m?flate was presented by Gorman and Diiyjin 1996. They used
[4,5]. Because of limitations on the number of terms required ke method of superposition. Rather than try to duplicate their
the series, the convergence was not assured for the range of cag@igtion process | decided to develop a new series solution. The
needed for meaningful comparison. The limitation was caused Byperposition method and the series solution method are basically
the size of the characteristic matrix. The order of the characteristite same. They both satisfy the differential equations identically,
matrix for the three-dimensional problem wa$,N,+N;N, some of the boundary conditions identically and the remaining
+N_N,, whereN,, Ny, andN, are the number of terms in the  boundary conditions approximately. The approximation of the
y, andz directions. The number of terms in each direction must deoundary conditions becomes better as more terms are chosen in
kept approximately proportional to the dimensions in the corréhe series. The differences between the superposition and series
sponding directions. For a compact body, however, convergencénsthod is more in the derivation process th{in in the final results.
no problem. A convergent three-dimensional solution for a In all comparisons it was found that the Timoshenko beam so-
1x1x2 rectangular parallelepiped is used in this paper for corffition with the S-H coefficient gave good results only over limited
parison. ranges. An S-H coefficient for which the _beam would provide a

One of the comparisons in RéfL] was to the work of Armeha good match with the more accurate solutions would have to be a

kas et al[6] for the vibration of infinitely long circular cylindrical function of the wave length as well as the aspect ratio. To study

Lo A is phenomenon, both displacement and stress resultant mode
s_hells. Theirn=1 case corresponds to_the beam vibrations éﬁ]apes were investigated for the simply supported beam.
simply supported beams. The frequencies from that work corre-

spond almost exactly with the frequencies found using Timosh-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OFAPPLIEDME-  Beam Solutions
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August 6, . . .
2002; final revision, August 6, 2003. Associate Editor: R. C. Benson. Discussion on The Timoshenko beam equations and solutions, as well as the
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journab}émemary Euler-Bernoulli beam equations and their solutions are

Applied Mechanics, Department of Mechanical and Environmental Engineeri ; : : .
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and Willn\l?e’ze” known. One concise reference which gives the characteristic

accepted until four months after final publication of the paper itself in the ASM@quationS. er a number of boundary conditions IS@EJH[S] The
JOURNAL OF APPLIED MECHANICS. S-H coefficientk, for a beam of rectangular cross-section is
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2(1+v) 22—
1) y

C CHu(1-WP)

where v is Poisson’s ratio\W is the width-to-depth ratio of the e
beam, andC is ‘

“ 36v2WA N — W tank n/W) S
C=—-2.4-3v+ W+ [ d ] A x
n=1 (nm)%(1+v) ¢
@) o
The Timoshenko beam equations solved with the above S-H co- iy
efficient is referred to as the Timoshenko solution in this paper. /

Three-Dimensional Solution ‘
Table 1 is a subset of the solution forms derived in Réf.

Sinusoidal motion is assumed so that each term is considered as
multiplied by sinwt. In the table thes andc in parentheses refer to

the sine and cosine, respectively, with the argumextfor the ox(a,y,z)=0 (20)
first set in parentheses in column By for the second set in

column 1, andsz for the third set in column Igx for the first set ay(x,b,2)=0. (11)

in columns 2, 3, and 48y for the second set in columns 2, 3, andTwo series are formed from linear combinations of the four solu-

4, and 6z for the third set in columns 2, 3, and 4. The relationfon forms in Table 1. For example,
between the wave numbers are N Ny

Fig. 1 Coordinates and dimensions for the beam

y
ot B4 = 2 3) O 21 A[2,C1+a,Co+asCa+a,Cal+ 21 B,[b;C;+b,C,
n= n=
a?+ B2+ 5%= w?lc} (4) +b4C5+b,Cy] 12)

wherew is the natural frequency, ard andc, are the dilatational whereC,, C,, C5, andC, refer to the expressions in columns 1,
and shear wave velocities, respectively. The condtaappearing 2, 3, and 4 of Table 1, respectively. This andb's are chosen so
in Table 1 isw?\/c2. The constants andu are Lame’s constants. as to partially satisfy the boundary conditions, and N, refer to

The physical dimensions and coordinate system used in tiiiee number of terms in the andy directions, respectively. With
section is shown in Fig. 1. The width of the beam & Zhe depth exception of theC's, expressions for all displacements and
of the beam is B, and the length of the beam i£2To satisfy stresses are identical to E@.2). For theA series choose
simply supported boundary conditions at the enéstc set,

E 2n—=1)m

5=b=ml2c. 5) B=B=——%p— n=123..N,. (13)

Note thatsr/2c could be multiplied by an integer, but it is equallyThis choice makes thé series satisfy boundary conditiorg)
valid to consider 2 as the wave length. The boundary condi- and(9). For theB series choose,

tions on the sides of the beam are

_ (n=-1)7w
Ty(a,Y,2)=0 (6) a=a= n=1,23...Ny. (14)
Td@,y,2)=0 (") " This choice makes th& series satisfy boundary conditioi()
7(X,b,2)=0 ®) and (7). Choosing thea’s andb’s as follows, completes identical
R satisfaction of boundary conditior(§), (7), (8), and(9).
Tydx.0,2)=0 ©) a,=(B2+ 8- a?)lasinaa (15)
a,=—2pB/sinaa (16)
Table 1 Solution forms for the three-dimensional elasticity a.=—25/sinaa 17)
equations in Cartesian coordinates 3
1 2 3 4 a4:_0 (18)
C OO0 peee aeen 0 0= (5% a®~ 81§ o3 @)
v B(c)(c)(c —a(c)(c)(c) 5(c)(c)(c) _ Py
W = a(e)(s)(9) 0 & AO)(s)(s) by=2alcosfb (20)
o —(K+2una?) —2paf —2pad 0 b;=0 (21)
(c)(s)(c) (c)(s)(c) (c)(s)(c) o —
oy —(K+2up? 2uap 0 —2uBs b,=—248/cosBb (22)
- 7(2?3(%2 (C)((S))(C) — (@) To keep track of the wave numbers, tf&s in Eq. (13) will be
‘ éc)(s)g:) ) (CZ)"(‘Sai (02)7560 subscripted with am and thea’s in Eq. (14) will be subscripted
T “2uap — 7 )%) - 7(5> with a B. Similarly the a’'s and 8's in Egs. (15) to (18) will be
Y (s)(c)(c) lzg(c)f:)) ) (léf@) (Sl(lé;x (¢)  subscripted with ai and thea's and 8's in Egs. (19) to (22) il
T2 —2uB6 s wap w(B- ) be subscripted with 8. Boundary conditior(10) is satisfied by
@@ (©E)s) @) (@) Seting
Tax 2nad uBS 5°—a?) pap b
(8)(s)(s) ()(s)(9) (S () f o(a,y)sin Banydy=0. (23)
0
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Evaluation of this integral gives Poisson’s ratio. To solve Eq31), values of the width-to-depth
ratio, the length-to-depth ratio, and Poisson’s ratio are assumed. A

[M1{A}+[M]{B}=0 (24)  starting value of the frequency is assumed and frequency values
where M is a diagonal matrix of ordem, . The coefficients on are stepped along until a sign change in the determinant of the
the diagonal are matrix [M] is found. The interval is then halved repeatedly until

the desired accuracy is obtained.

M =9[—(K+2W2 V(B2 + 82— a2 ) apytanassa .
=5 An/A2An AnJTEEAN An Plate Solutions

+apa’ (Ba,+ 8% apn, tanannal The elementary plate has been treated in a number of books and
papers. The most extensive compendium of solutions is in the
where n=1,23 .. .N,. (25) monograph by Leiss&9]. The elementary SS-F-SS-F plate is

treated by Leissa starting on p. 53. Because of the completeness of

The matrixM i ici : L - X
e matrixM, has the following coefficients that work it is not necessary to repeat the equations here. Leissa

M =[—(K=2ua? ) (82+a2 — B2 )/(B% — B2 also treats the SS-F-SS-F Mindlin Plate starting on p. 318 using
== ﬁ am ™ Bam)/ (Ban™ Ban) the 1956 work of Mindlin et al[10]. There is a drawback with the
*4lmémﬁ23m/ equation development in the 1956 Mindlin et al. paper. In that
5 . paper, the authors assume a shear coefficient?if2 and build
(Ban— Bam)1cOSapma sin fanb that into their Egs(3), [10]. The use of any other shear coefficient

_ _ in Egs.(3), [10], will produce incorrect results. This drawback is
wheren=123...Ny, and m=123...Ny. easily remedied by going back to Mindlin’s 1951 paplrl].
(26)  Using the expressions fa@: and &3 from Mindlin’s Eq. (59), [11],

Boundary conditior(11) is satisfied by setting and oy and o, from Eq. (60), [11], and ? from Eq. (54), [11],
a will clear up the problem. The remainder of the Mindlin et al.
f a,(X,b)cosagxdx=0. @7) 15_956 paper clearly shows how the solution is accomplished and
will not be repeated here.
) o ) The choice of a best shear coefficient in the Mindlin theory has
Evaluation of this integral gives also received some attention. In his 1951 paper Minglij de-
[M,{A}+[M,]{B}=0 (28) termined the shear coefficient in two different ways. One way was
) . } . matching the thickness shear modes, which led to the coefficient
whereM; is a diagonal matrix of ordeN, . The coefficients on  72/12 The other way was matching the three-dimensional solu-
the diagonal are tion for straight crested flexural waves at short wave lengths, re-
al* sulting in a shear coefficient that is a function of Poisson’s ratio
M 29mm= (E [—(K+2,u,8§m),83mtanﬂ3mb(52+ aém— ,Bém)/ _and is found by solving a cubl_c equation. In a 1984 paper, Hutch-
inson[12] found that by matching the solution for straight crested
2 2 2\ o T flexural waves at long wave lengths a shear coefficient @-5¢)
Bemt4u(agy,t 6%) Bemtan Bgmb] could be found. In Ref[12] this shear coefficient was found best
where m=1,2,3 .. .N,. (29) for the lower frequency modes and so is the one used in this paper.

h isk om/2 hat f h h .. Abrief numerical check also showed that this coefficient provided
The asterisk o/2 means that fom greater than 1 the quantity is yo ¢josest match to the three-dimensional theory developed in

al2, vyhereasmzl Is a spe.cial case and for thgt Caseust be. this paper. This coefficient was also suggested in the work of
substituted fom/2. The matrixM ,; has the following coefficients: Witrick [13] in 1986 and Stephefi4] in 1997. Both Mindlin[11]

Moumn=[(K—2uB2)( 8%+ B2, — a ) (a— a3, and .St.epher[lézl] pointeq out that for thickness shear modes a
coefficient of 7</12 provides accurate results, but for the modes
+4M,Bf\n5§n/ considered in this paper the coefficient of@fv) was clearly
s — . best. There is an interesting connection between the plate coeffi-
(agm— apn)]COSagma SINBanb cient 5(6—v) and the S-H coefficient given in Eql). If one
where n=1,2.3 . ..N considers the value of W in Eg&l) and(2) approaching zero, one
ey gets k=5(1+v)/(6+5v). This is the plane stress solution. If one
and m=1,2,3...N,. (30) considers the conversion to plane strain by the appropriate substi-

tution of Poisson’s ratio one gets(6+ v).
" For the completely free Mindlin plate solution a new series
solution was developed. This series solution is very similar to the
My Mgl (A 0 method used by Gorman and Difd]. It uses solutions of the
[M M ”B] :{O]' (31) governing equations. It satisfies some of the boundary conditions
21 22 exactly and approximates the rest. The superposition method of
It can be seen from Eq&3) and(4) thata?, 82, a2, andEz have Gorman and Ding accomplis.hes ;he same thing but in a different
the possibility of taking on negative values. For the A selend Manner. For the plate solutions it was decided to use the same
Eare positive sa? anda? can be negative, likewise, for the Bcoordlnate sys_tem_ as Mindlin rather than Fhe beam coordinate
) _ ATTEA T - ’ s system shown in Fig. 1. In the Mindlin coordinate systeandy
seriese anda are positive sg8 and Bz can be negative. In Egs. gre in the plane of the plate and z is out of the plate forming a
(25), (26), (29), and(30) the only place where any of the valuesright handed orthogonal coordinate system. In this coordinate sys-
ap, ap, Bg, Or Bg occur in the nonsquared form, they are in théem x is the widthy is the length and is the depth of the corre-
form apntanaa@a which is real and is computed assponding beam.
— | aan/tanh{aaga). To carry out the series solution, solutions of the differential
A dimensionless frequency parameter is introduced as the fexguation are found. The three types of solution forms are tabulated
qguency divided by the shear velocity times the depth of the beamTable 2. In this table only solution forms which are symmetric
(2b). This frequency parameter will be referred to as the frén both the lengthy and widthx coordinates are shown. To match
quency in the remainder of this paper. The only parameters of theam solutions, only the solutions which are symmetric in the
problem are the width-to-depth ratio, the length-to-depth ratio anddth coordinate are needed. Solutions symmetrig account for

Equationg(24) and(28) can be written as a single matrix equa
tion as follows:
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Table 2 Solution forms for Mindlin plates in Cartesian coordinates

Form 1 Form 2 Form 3 Multiplier
w 1 1 0 cosEx)cos(ny)
Py —(o1—1)§ —(0,—1)§, 1/g, sin(&x)cos(yy)
4 —(o1=1)m —(o2=1)n, —1/n; cosgx)sin(ny)
'Vf/x /D (o= 1)(&-vn) (o= 1) (75— vE3) 1-v cosgx)cos(y)
M, /D (o= (mi-vé) (o= 1)(p5—vE) ~(1-v) coséx)cosy)
Myx/D(1-7) (o1=1)&1m 0= 1)&7, (65— 73)/2¢5m5 sin(éx)sin(zy)
Q./x?Gh o1y ~ 02, 1, sin(@)cose)
Qy,/x*Gh —oum — 0272 —1/n, cosgx)sin(zy)

modes 1, 35... . For nodes 2, 4,6 ... slight modifications Use is made of the symmetry and antisymmetry in the problem so

must be made to the table. The multiplier in the last column of tithe boundary conditions only need to be considered at positive
table applies to all three forms, thus for example, the displacememtd positivey. The boundary conditions which must be satisfied
w for Form 2 is cos{,x)cos(py). Other notation follows that of are

Mindlin [8] with one exception—what Mindlin calls, | will call

52, and | will introduce a dimensionless frequeney The nota-

tion is as follows:
G-shear modulus
h-plate thickness
v=Poisson’s ratio
D-plate stiffness D=Gh3/6(1—v)
«2-Shear coefficient
p-density
p-natural frequency

w-dimensionless frequency w= pp?h/D

M,(a,y)=0 My(x,b)=0 (40)
Myx(a,y)=0 My (x,b)=0 (41)
Qx(@a,y)=0 Q,(x,b)=0. (42)

Solutions are formed in two series which are called Ahseries
and theB series. The general form of these series is

NX
f(x,y)= 21 An[@1ng1nt a2n92n+ A3n93n]
=

N

y
+ El Bn[blngln+ b2n92n+ b3ngan] (43)
A=
whereN, andN, are the number of terms in theandy directions
respectivelyA, B, a, andb are arbitrary constants. The functibn
represents any of the functions in the left column of Tableel,

Mindlin’s values &2, 85, &5, o1, and o, can be expressed in displacement, slopes, moments, or shediseg;, d,, gs, rep-

terms of the dimensionless frequency as

, 30i(l-v)|1 1
5= —+
h? 12 6(1—v)«k?
+ \/( ! ! )2+ 4 (32)
12 6(1-v)k?] 6(1—v)w?
52_3w2(1—v) 1 1
2 h2 12 6(1—v)k?
\/ 1 1 2+ 4 3
12 g(1-v)k? 6(1—v)w?
2_a)2—12K2
53—T (34)
255h? (@)
o1 =——F—"" "+
Y (1—v)(0?— 1242
265%h? (36)
Oy=——————————.
2 (1 v)(w2—12¢?)
The relationship betwee& » and §is
&+ =6 (37)
&+ mp= 85 (38)
&+ 5= 85 (39)
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resent the functions listed in the columns 1, 2, and 3 with their
appropriate multipliers. Thus, for the displacemeng,; would be
cosg;X)cosfy,x), for the slope ¢, g; would be — (o,

—1)&1n sin(nX)cos(riny) etc.
Choosing

(n=1)m
Ean=1an= E2an= E3an= n=123...N, (44)

makes theA series satisfy the boundary conditiolfs,,(a,y) =0
andQ,(a,y)=0. Choosing

(n=21)m

7Bn= M1en= 7280~ 730" n=123.. N,

(45)

makes theB series satisfy the boundary conditiolfg,(x,b) =0
andQ,(x,b)=0. The coefficients can now be adjusted to satisfy
M,.(a,y)=0 andQ,(a,y) =0 in the B series andVl,,(x,b)=0
andQ,(x,b)=0 in theA series. TheA series representation of the
twisting moment is

N

X 1
Myx(xab) = 2 AnlainTintaznTont+asnTan] f_ sin§,x

1 n

(46)
where

T1=(1-v)(01—1)Exnar SIN( 7a1D) (47)
To=(1—v)(02— 1) Eanar SiN( 7a2D) (48)
Ta=(1—v) (£~ 7a3) a3 SIN( 7a3h)/27735. (49)

The A series representation of the sh€ais
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NX
Q,(x,b)= ; An[1,V1n+ 850V o0+ 8gnV3n]COSEX  (50)

where
V1= = 01741 SIN(710) (51)
Vo= = 0272 SIN(7720) (52)
Va= = 73 Sin( 7a3b)/ 7. (53)

The quantities in brackets in Eq¥6) and(50) must be zero. This
is accomplished by letting

a=TrV3—TsV, (54)
a=TzV;—T;V3 (59)
az=T1Vo—=TyV;. (56)

The same process is carried out to determine the vdlye®,,
andb; so thatM,(a,y) =0 andQ,(a,y) =0. The only remaining

( 77,2A2n_ Wém) —agn(1—v) 730 SIN( 7a300)/

(73an— Mam) 1COK £an@) COL 7,D) (64)

wherem=1,2,3 .. .N,n=1,23 .. .N,.
Combining Egs(30) and(33) gives

Cu Cp {A] [0] 65
Car Col1BJ 7 l0) ©9)

The matrixC is a square matrix of orde¥,+N,. The entire
problem can be made dimensionless just by setting the thickness
h=1. The lengthsa andb are then the ratios af andb to h. The
only parameters in the problem age b, v, k2 and w. Natural
frequencies are found by assuming values,db, v, and «2 then
searching for the values af which make the determinant € go
to zero. Mode shapes are found by solving for the relative values
of A andB after the natural frequency is established.

It should be noted from Eq$37)—(39) that £2 and 7 can be
negative. Some authofs.g., Refs[7] and[10]) talk about divid-

boundary conditions are on the bending moments and those W@ into regions because of this, however, the problem can be

be satisfied by orthogonality. That is by setting

a (m—1)mx
f My(x,b)cos(—a )dx=0 m=1,2,3...N, (57)
0

b (m=1)my
M,(a,y)co r— dy=0 m=123..N,.

0
(58)

Evaluation of the integral in Eq57) leads to the matrix equation

[Cil{A}+[Cpol{B}={0} (59)
where the matriX C44] is a diagonal matrix whose terms are
Cu1n=(a/2)*[~a1n(01~ 1)(7asn+ ¥ER,) COS 7a10D)
—8n(02— 1) (o0 ¥ERn) COS 7p20b)
—agy(1—v)cos 7aznb)] (60)

where @/2)* equalsa for n=1 and a/2 for n>1 and n
=1,2,3 .. .N,. The matrix[C4,] is a full matrix whose coeffi-
cients are

Ciomn=[—b1n(o1—1)( ﬁénJr V‘féln)gBln sin(égind)/
(&1~ Eam) — Dan( 02— 1) (9h,+ vEE0) Epan SIN(Epand)/
(&3n— Eam) — ban(1— 1) £gay SIN( £3nd)/

(E&3n— Eam) 1COS Enn) COS 75,b) (61)

wherem=1,2,3 .. .N,n=1,23...N,.
Evaluation of the integral in Eq58) leads to the matrix equa-
tion

[Coal{A}+[C2l{B}={0} (62)
where the matri{ C,,] is a diagonal matrix whose terms are
Com=(b/2)* [ ~b1n(01= 1) (&G ¥ 7E) COL £p1n@)
—ban(02= 1) (€820t v 7B)COL £g202)

—bgn(1—v)cog épgna) ] (62)

where (/2)* equalsb for n=1 and b/2 for n>1 and n
=1,2,3 .. .N,. The matrix[C4,] is a full matrix whose coeffi-
cients are

Comn=[—ai(o1— 1)(§,§n+ Vniln) 7a1n SIN(7a108)/
(Dan— Mhm) — (02— 1)

2 2 :
X (&ant Y 7az2n) Maz2n SIN( 7a202)/
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handled more simply. It can be seen that the only placasd »
appear in a nonsquared form in any of the foregoing equations,
they appear in the form ca&) or in the formé sin(éa) where é

can stand for eithef or » anda can stand for eithea or b. Both

of these forms are real. If* is positive they are calculated as
cosga) and &sin(£a). If £2 is negative they are calculated as
cosh(ga) and —|£|sinh(&a), respectively. It also is desirable to
divide the hyperbolic functions by exfH) to prevent computer
overflow.

The elementary plate solutions were found by simply letting the
thickness of the plate go very small compared with the other di-
mensions, solving using the above Mindlin plate formulation and
then using an appropriate scaling factor on the frequency. The
accuracy of this approximation was checked by comparing the
solutions in Gorman and Ding] and in Leissd9].

Results for Simply Supported Comparison

Convergence checks were made on the three-dimensional solu-
tion. For a square beam, it was found that by using five terms in
each series, the frequency was good to about four significant fig-
ures. By using 100 terms in each series the frequency was good to
about eight significant figures. As in my previous experience with
these series solutions, it was found best to choose a number of
terms in each of the series roughly proportional to the dimensions
in those directions. In keeping with this concept, for all numerical
results reported, | choose 100 terms in the shortest direction and a
correspondingly larger number of terms in the long direction. For
example, for a beam with a width-to-depth ratio of 10, | took 100
terms in they (depth direction and 1000 terms in the (width)
direction.

In Fig. 2, the values of a shear coefficient reciprocal, which
would make the Timoshenko beam theory match the three-
dimensional solution, are shown as dashed lines. The solid line is
the S-H coefficient reciprocal plotted as a function of the width-
to-depth ratio. The numbers on the dashed lines indicate the
length-to-depth ratio. It can be seen that when the width-to-depth
ratio is less than 2 the match between the required coefficient and
the S-H coefficient is very good for any wave length. The match
for greater values of width-to-depth ratios is only good for long
wave lengths. If the length-to-width ratio is greater than 5 the
required coefficient matches the S-H coefficient relatively well.

A perhaps better comparison is made with the natural frequen-
cies in Figs. 3 through 5. These figures show the variation of
frequency with the width-to-depth ratio for length-to-depth ratios
of 10, 20, and 40, respectively. The figures show the frequencies
as determined by the three-dimensional solut®D), the Mindlin
plate solution(M), the Timoshenko beam solutigiiB), the el-
ementary plate solutiofEP), and the elementary beam solution
(EB). The three-dimensional and Mindlin solution plotted as es-
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Fig. 5 Frequency versus width-to-depth ratio, for a length-to-
depth ratio of 40 and Poisson'’s ratio of 0.3, for the five solution
methods considered. For a simply supported beam.

Fig. 2 Shear coefficient reciprocal versus width-to-depth ratio.
—S-H coefficient. — — —Coefficients which match three-
dimensional solutions for length-to-depth ratios of 1, 10, 20,
and 40. For a simply supported beam.

changes in Figs. 2 through 5 would all be greater, and conversely
as Poisson’s ratio approaches zero all changes disappear.

One very interesting result which is evident in Figs. 3 through 5
that the elementary plate solution shows a frequency variation
h the width-to-depth ratio that mimics the frequency variation
the three-dimensional solution. The elementary plate formula-

sentially the same curve and are labg@D-M). Tabulated results
are also given for selected values in Table 3. By comparing Fig.-g
to Figs. 3 through 5 it can be seen that in the regions where

required shear coefficient matches the S-H coefficient, the frﬁjr

quencies for the Timoshenko beam match that of the thr on does not allow for any shear deformation or rotary inertia.

dr:mensr,]longl solugon and tr:'e I\:I]m(?lln plate sc?lutlo_n. fln FI'OgS' his leads to the conclusion that the large variation of frequency
o b o ooy e 5 e e el e th w1 deph rato s ot broughtabou b e presence
thgeor as the wi dthclto- dey tﬁ’] ratio incrgases These results areg? hear deformatlon_ and rotary inertia, but rather by plate action.
for ayPoisson’s ratio of % 3 For a higher. Poisson’s ratio thﬁ{ re are several things occurring in the plate that aren’t usually
"~ Sccounted for in beam theory. One, is the effect of the variation of
the displacement (y direction as a function of the width coor-
dinatex on the inertia. This effect was accounted for in Ré&f.by
assuming full anticlastic curvature and leads to increased inertia
and hence a lowering effect on the frequency. Another plate effect
is the twisting effect which produces the twisting moment. This
effect was accounted for in Ré¢fl] by the assumption of the shear
stress distribution found from the three-dimensional solution of
the tip loaded cantilever. This assumption gave shear stregses
as well ast,. It is the 7,, stresses that produce the resultant
twisting moment in the plate. This twisting produces a stiffening
effect and hence increases the frequency. The combination of
these plate effects leads to a rise in the frequency with an increase
in the width-to-depth ratio. The plate effects are the main cause of
the frequency variation with the width-to-depth ratio. The deriva-
tion of the S-H coefficient by Stephdi8] is based on a three-
dimensional solution and, so, also contains the plate effects.

The plate effects also lead to an understanding of the reasons
for the divergence of the Timoshenko beam equations from the
three-dimensional solution for large width-to-depth ratios and
short wave lengths. Both Reffl] and [3] made use of three-
dimensional static solutions which were applicable to long beams.

0.048

TB
0.047 -

Frequency

°©
o
N
o

0.045 * ' ‘ :
0 10

Width-to-Depth Ratio
Fig. 3 Frequency versus width-to-depth ratio, for a length-to-

depth ratio of 10 and Poisson’s ratio of 0.3, for the five solution
methods considered. For a simply supported beam.

0.0116

EP Table 3 Frequencies for the simply supported beam for se-
lected length-to-depth  (L/D) and width-to-depth (W) ratios com-
puted by the methods listed below. For the Mindlin plate a
shear coefficient of 5 /(6-») was used. For the Timoshenko beam

the S-H coefficient was used. Poisson’s ratio was 0.3.

0.0115

Frequency

3-D
W  Solution

Mindlin
Plate

Timoshenko. Elementary Elementary

L/D Beam Beam Plate

0.0114
0

Width-to-Depth Ratio

10

Fig. 4 Frequency versus width-to-depth ratio, for a length-to-
depth ratio of 20 and Poisson’s ratio of 0.3, for the five solution

methods considered. For a simply supported beam.
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1

1
10
10
20
20
40
40

2
10
2
10
2
10

2
10

2.3925141
2.4195486
0.0452410
0.0460918
0.0114405
0.0115377
0.0028685
0.0028761

2.3926823
2.4153869
0.0452478
0.0460982
0.0114410
0.0115384
0.0028685
0.0028761

2.4201901
4.7318781
0.0452420
0.0473894
0.0114405
0.0115732
0.0028685
0.0028768

4.5940508
4.5940508
0.0459405
0.0459405
0.0114851
0.0114851
0.0028713
0.0028713

4.7507985
4.7990391
0.0460392
0.0469963
0.0114916
0.0116040
0.0028717
0.0028806
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Fig. 8 Twisting moment M,, versus x at y=L/2, z=0 and
bending moment M, versus x at y=2z=0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 2. For a simply supported
beam.

Fig. 6 Displacement versus x at y=z=0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 2. For a simply supported
beam.

Looking at the stress resultants also proved valuable. For the

For a short wide beam, the end effects are significant. In t oshenko beam solution the twisting moment resultant was

central portion of the beam, the variation of the displacement wi; und by integrating 7,,, across the thickness of the beam, where

X W.i” be greatly suppressed af‘d the plate will be flatter in th andy refer to the beam coordinates shown in Fig. 1. Figures 8
region. To better understand this phenomenon, mode shapes Wel§ 9'show some of the modal resultant moments in the body. The
investigated. Both d_|splacement and stress resultant mOd.e sh dinate system and notation used for these figures is Mindlin’s
were found for the Timoshenko beam theory and the Mindlin pla

theory. To show the anticlastic behavior, plots were made of tfﬂﬁgri]déﬂta;ﬁ sy;;[eyn; i?g gﬁfja;'g(‘)' 'f:é?uggtshstﬁng?mSgs%vér:tg t;\::ztlng
yX

displa(;.‘eméer:t az=_t()d§nd|y=0 astafut:ncﬂon_og. 'A:‘” mod6es \;]vere Mindlin solutions. Also shown is the plot is the bending moment
normalized to unit displaceément &ty =z=0. Figuré o shows M, aty=z=0. This is the bending moment in the thickness di-

the Timoshenko and Mindlin solutiongabeled T and M for a : . : :

. . : rection and is neglecte@ssumed zepan the Timoshenko beam
length-to-depth ratio of 10 and width-to-depth ratio of 2. It can b jation. The gmomeg‘rins are in dimensionless form. They are
seen in this figure that the two solutions almost coincide. By loo hade dimensionless by dividing by the shear modulus and the
ing at Figs. 2 and 3 it can be seen that this is also where thg squared. In Fig a length-to-depth ratio of 10 and width-
frequencies are reasonably close together. Figure 7 on the ofighe " atio of 2 was used. It can be seen that the twisting
hand is for a length-to-depth ratio of 10 and width-to-depth ratig, e ts for both the Timoshenko and Mindlin formulations are a
of 10 for which the frequencies do not match. The Tlmoshenl@ery good match. The bending momévit, which was not shown

and Mindlin solutions do not match for this case. The displacg- : ; . S i
ment is much flatter for the Mindlin plate solution than for thg’gs 0.021 or approximately 40 times the maximum twisting mo

beam solution. Displacement modes shapes were also found ent and 100 times the thickness bending moniéqt Figure 9

length-to-depth ratios of 20 and 40 for several values of the Width- icgnaggngéz_rto{ﬁaetpmgil?so; é Omaarlghw;)d;&té)ége%tg {\?vtcl)otwislt?r;g

to-depth ratio. In all cases the same behavior was noticed. Tha ments, and the momekt, is larger than the twisting moment
if the frequenpie§ agreed the mode shapes did also, and if find usi’ng the Mindlin mxethod. The bending moméay, for
frequencies didn’t agree the Mindlin plate displacement modﬁﬁs example is 0.023 or roughly seven times the maximum twist-

were much flatter. ing moment and five times the bending mombht. Other com-

14 T T T T 0.007 T T T T
0.006} Myx -7 -
13+ - L _
0.005 M
X
g £ 0.004 1
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o (3
g T - M M
g 12| S 0.003- i
a 0.002
11+ 7
M 0.001
0 [ | ! i
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Fig. 7 Displacement versus x at y=2z=0, for a length-to-depth

ratio of 10 and width-to-depth ratio of 10. For a simply sup-
ported beam.

Journal of Applied Mechanics

Fig. 9 Twisting moment M,, versus x at y=L/2, z=0 and
bending moment M, versus x at y=2z=0, for a length-to-depth
ratio of 10 and width-to-depth ratio of 10. For a simply sup-
ported beam.
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parisons of the twisting moment show similar results, that is, 0.105
when the frequencies for the two solutions match the twisting EP
moments match, but when they aren’t reasonably close the twist- 0.104 F EB
ing moments also differ. Also when there is no match the thick-
ness bending moment is not negligible. §‘o.103 L
v
=
Results for Free-Free Comparison Eo.wz L
Solutions for the Mindlin plate were checked against the work 18
of Gorman and Ding7]. Of the 360 frequencies for thick plates 0.101 v
there was lack of agreement in only ten values. In private corre- |
spondence with Professor Gorman it was determined that 6 of 0.100 L ‘ ' .
those disagreements were typographical and four were due to 0 4 s

1 2 3
false roots which sometimes occur in these types of formulations. Width-to-Depth Ratio

There were also some minor disagreements in mode identificati%p
however overall the agreement between the two was excellegf,
The results of the thin plate values in Gorman and Ding wegg,
compared with the Mindlin series solution using a thickness-to-
width ratio of 0.0001. The results agreed to the same degree of
accuracy as for the thick plate. Because of this agreement,%

12 First mode frequency versus width-to-depth ratio, for a
gth-to-depth ratio of 10, for the four solutions considered.
r a free-free beam.

. - . 1.64725 for a shear coefficient of(6/v). Timoshenko beam
elementary plate solution plots, shown in this paper, are actu . . e
the results for a thickness-to-width ratio of 0.0001 using the thick oY yielded a frequency of 1.65066 using the S-H coefficient. It
plate formulation. is remarkable that both of these simple theories yielded good re-

Solutions for the Mindlin plate were checked against the thre@yltS for a shape that could neither be considered a beam nor a

. - ; - ; late.
dimensional solution of Hutchinson and Zillmlér,6]. To get con- p . . . .
vergence in the three-dimensional solutionrgl]_k]z par%llelepi- Plots were made cqmparlng.the S-H coefﬂuent reciprocal V‘."th
ped was chosen and 2@0x 40 terms were used in the solution the beam shear coefficient reciprocal required to make the Mind-
The three-dimensional fundamental frequency was 1.64723 foP solution match the beam solution. A Poisson'’s ratio of 0.3 and

Poisson’s ratio of 0.300. Mindlin plate theory yielded afrequenc& indlin plate coefficient of §6—1) was used for all plots.
. nlike the simply supported case, where one can simply refer to a

wave length, for the free-free beam different modes must be con-
1.2 sidered separately. Figures 10 and 11 show the S-H coefficient
’ reciprocal vs. the width-to-depth ratio for the first two modes,
respectively. The length-to-depth ratio is a parameter in these
plots and is numbered on the plots. It can be seen that the behavior
is very similar to simply supported case shown in Fig. 2. Plots
were also made for the third and fourth modes but they were so
similar to those shown in Figs. 10 and 11 that they are not shown.
Figures 12 through 15 show the frequency versus width-to-depth
ratio for beams of a fixed length. In these figures EP refers to the
elementary plate solution, EB refers to the elementary beam solu-
tion, TB refers to the Timoshenko beam solution and MP refers to
the Mindlin plate solution. Figures 12 through 14 are for the first
mode for length-to-depth ratios of 10, 20 and 40, respectively.
Figure 15 is for the second mode with a length-to-depth ratio of
20. It can be seen in all these plots that the change of frequency of
the elementary plate mimics that of the frequency change of the
Mindlin plate. This is the same behavior that was found for the
simply supported case. The change in frequency with the beam
aspect ratio can be attributed to plate action and not to the shear
stress distribution. It can also be seen by comparing Fig. 10 with

1.0

0.8

0.6

0.4

Shear Coefficient Reciprocal

0.2 ' . : :
0 1 2 3 4 5

Width-to-Depth Ratio

Fig. 10 Shear coefficient reciprocal versus width-to-depth ra-
tio. ——S-H coefficient. — — —Coefficients which match Mind-
lin plate solutions for the first mode for length-to-depth ratios
10, 20, and 40. For a free-free beam.

1.2 |

§ 0.0262

E1.0

3 0.0261 EP

&

= 0.8 o

3 £ 0.0260 EB

So6 g

S £ 0.0259 |- B

§ 0.4 —/%

@ 0.0258 F

0‘2 l l | i
0 1 2 3 4 5 0.0257 | | | |

Width-to-Depth Ratio 0 1 2 3 4 5

Width-to-Depth Ratio
Fig. 11 Shear coefficient reciprocal versus width-to-depth ra-

tio. ——S-H coefficient. — — —Coefficients which match Mind- Fig. 13 First mode frequency versus width-to-depth ratio, for a

lin plate solutions for the second mode for length-to-depth ra-
tios 10, 20, and 40. For a free-free beam.
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length-to-depth ratio of 20, for the four solutions considered.
For a free-free beam.
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0.00652 2 through 15 would be greater. For a Poisson’s ratio of zero all
changes in those figures would disappear and they would simply

EP become horizontal lines.

0.00651 |- Conclusions
Fea)
Q
g EB * The new three-dimensional solution provides an excellent ba-
= . . . . .
g sis of comparison for the Timoshenko beam and Mindlin
) plate approximations.

0.00650 TB _ _ i .
* The Timoshenko beam solution using the S-H coefficient

__/% gives good results only for a width-to-depth ratio of 2 or less,

or a length-to-width ratio of 5 or greater.

0.00649 ' L : ' The Mindlin plate theory provides excellent results over the
0 1 2 3 4 5 entire range considered.

The S-H coefficient is not just a function of the shear stress

] ] ) ) distribution, but also includes the plate effects of the anticlas-

Fig. 14 First modg frequency versus W|dth-t0'-depth ratio, fora tic inertia and twisting.

length-to-depth ratio of 40, for the four solutions considered. The S-H coefficient, while including some of the plate ef-

For a free-free beam. fects, does not include all the effects when the wave length is

short.

A wide rectangular beam may have a frequency which ex-

ceeds the frequency predicted by the Euler-Bernoulli beam

theory.

Width-to-Depth Ratio

Figs. 12 through 14 and Fig. 11 with Fig. 15 that in regions where
the required shear coefficient matches the S-H coefficient that thedication

frequencies for the Timoshenko and Mindlin solutions also match. _, . . . .
Finally it should be noted that all results reported in this pap:liggglsz%%%er is dedicated to the memory of Scott D. Zilimer,

were for a Poisson’s ratio of 0.3. This was not meant to imply th ’

the solution was not highly dependent on Poisson’s ratio. On tReferences
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Measurement and Simulation of
the Performance of a Lightweight
Metallic Sandwich Structure With
a Tetrahedral Truss Core

Metallic sandwich panels with tetrahedral truss cores have been fabricated and their
structural performance evaluated. A fabrication technique involving deformation-shaping
and brazing has been used. The responses of the structure in core shear and panel
bending have been measured. The results demonstrate robust behavior beyond the limit
load. A finite element simulation of the core shear response duplicates the features found
experimentally. When combined with the constitutive properties of the face sheet material,
these shear characteristics have been shown to predict, with good fidelity, the limit load

for panels in bending[DOI: 10.1115/1.1757487
H. N. G. Wadley

Department of Materials Science and
Engineering,

University of Virginia,
Charlottesville, VA 22903-2442

1 Introduction - P

The attainment of minimum weight structures has a long his- T EL (22)
tory, [1-8]. Three technical factors are involved in achieving thig hereE is the Young’s modulus. Fdrendingover a spars, it is
goal: (i) materials selection[1], (ii) topology optimization, more convenient to express the load index through a combination
[9-17, and (i) multifunctionality, [12,16. Topologies that can qf the maximum bending momer), and maximum transverse
be used to achieve high load capacity at low weight are exemplhear v/ (both per unit width, [11]:

fied by truss structures that stretch or compress without bending
and honeycomb core panel§,1-20. The truss topology has the .= \
benefit that the open spaces can be used to impart functionalities b™ JEM'

in addition to load bearing, such as active coolifig12,14, . . . -
whereupon, the extra weight of an additional component normally 1€ ratio of the maximunM and V defines a characteristic

needed to imbue that extra function can be saved. length scalef =M/V, [11]. For example, in three-point bending,
Performance indices are needed to ascertain minimum Weighf S/2,[11,17. When this index is used, the weight inde is

configurations and to compare designs. The indices are based @fffined with¢ replacinglL. ,

overall structural weightW (per unit ares load, P (per unit ~ comparative indices exist forstiffness but they are

width), stiffness, and yield straim, . When the faces and the coreconfiguration-dependerit},2,7,9. Stiffness governs the weight at

are made from the same alloy, the weight index1s6,11): smaller loads, wh_il_e streng_th is performance limiting at hi_gher
loads,[1], exemplified by Fig. 1. The present assessment is re-
w stricted to strength-limited designs, pertinent to high loads.
V= oL (1) Strength-limited minimum weight designs are founditgnti-
fying the failure modesspecifying the load capacity and then
wherelL is the length of the panel/lbeam apdhe density of the varying the dimensions to determine the lowest weight for each
solid material. mode,[1,11]. The benchmark configurations against which com-
For designs based airength the loads supported icompres- peting technologies should be compared are summarized on Fig.
sion can be compared using the load indg; 2,[12,15.
For flat panels, sandwich designs with honeycomb cores repre-
Contributed by the Applied Mechanics Division offf AMERICAN SOCIETY oF  Sent the performance benchmark in bendity (Fig. 2(a)), while
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  hat-stiffened panels define the benchmark in Compres$ﬁjn’
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decemy =i i i i
ber 2, 2002; final revision, December 29, 2003. Associate Editor: E. Arruda. Discu(sElg' 2(b)) For ?urYEd Conflguratlons’ .the referen_ce SYStem IS
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeeki ,mpr'SEd _Of distributed a_xnal and qlrcumferentlal stiffeners,
Journal of Applied Mechanics, Department of Mechanical and Environmental Endil, 12,21, (Fig. 2(c)). Alternative topologies need not structurally
neering, University of California—Santa Barbara, Santa Barbara, CA 93106-50@utperform these benchmarks, provided that they exploit other
and will be accepted until four months after final publication of the paper itself in thﬁttributes such as cost. durability. strenath retention after impact
ASME JOURNAL OF APPLIED MECHANICS. . l. . Yy 9 pact,
[1,22,23, and multifunctionality[1,12,16.

(20)
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Fig. 1 The minimum weight as a function of load for a simply
supported panel subject to a uniformly distributed pressure,
evaluated for a material with yield strain, £,=0.007, and maxi-
mum allowable center displacement, &/ S=0.1. Results are pre-
sented for several values of the relative density of the core. In

all cases, at large loads, the panels become strength-limited.

Panels with open truss cores offer one such alterndtiviel§.

They are more amenable to forming into complex shapes than
honeycomb cores|19], and they allow fluids to readily pass
through, [16], rendering them less susceptible to internal corro-
sion. They are also attractive for cross flow heat exchageln

flat panels, when optimized, such cores are as light as the bench:
mark designs in both bendinfl1], (Fig. 2(a)) and compression,
[1,21], (Fig. 2(b)). Moreover, in curved panels, they are much
more structurally efficient than stiffened desigh$,21], (Fig.
2(c)). At loads relevant to aerospace applicatioid, the mini-
mum weight occurs at a core relative density in the range 2—3%,
with thin faces(thickness to load span of ordex303), [11].

The failure mechanisms operating at the optimum depend on the
yield strain of the alloy being useffl11]. At the high yield strains
pertinent to aerospace grade Al alloys, failure occurs by concur-
rent face yielding, face buckling and elastic buckling of the com-
pressed truss core membekl]. For the lower yield strains rel-
evant to stainless steels, the failure modes are concurrent face
yielding, face buckling and core member yieldihdl].

Experimental assessments of these predictions have been mad
in panels fabricated by an investment casting prodds$s, using
materials having yield strains in the range where the core response
is yield (rather than elastic bucklinglominated. These investiga-
tions had two primary limitations(i) due to the constraints on
aspect ratio imposed by investment casting, the core members
were less slender than that at the optimuii, the casting intro- L
duced defects that limited the ductility, inhibiting the ability to 0 92 04 OF 0. 10
probe the performance envelope. Other limitations included the M/EL{x105)
relatively high manufacturing cost associated with investment Voud ket -
casting, as well as the limited property range that can be accesse(

(relative to wrought material

These issues are addressed in the present study by applying a
manufacturing procedure for open cell tetrahedral truss core struc-
tures (Fig. 3) applicable to wrought metal$19]. The cores are
made using metal perfo_ration and deformation-s_haping PrOCESSES. . 110 minimum weiaht as a function of load capacit
They are bonded_t_o th'.n m_etal face_shegts using a braz.'”g_' 'varioEJs) panels under shegr and bending load. (lf) ngght
proach. The specific objectives of this article are as folloWs: | qey versus load index for axially compressed flat panels,
manufacture wrought panels with core densities in the ranggio,1822]. (c) The minimum weight as a function of load for
found for fully optimized panelgabout 2%, [11]; (i) measure the axjally compressed curved panels. N is the load per unit length
performance of these panels subject to overall bending loads, afSthe periphery, [12].

Wenght Index
WipL

Teuss Con

Weight Index
WipR{10%)
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- whereH. is the core height; is the face sheet thickneds, is the
Megative ¢ ot %

Orientation truss member lengthi= \LZ—H?, oy is the yield strength, and

is Poisson’s ratio. The core failure modes are dictated by the shear
force per unit widthV, [11]. For truss members with rectangular
cross-sectiorfwidth, w and thicknesst), the constraints are

3VvdL
Positive %SUY (core member vyielding (3c)
Orientation c
J3vdL, km%E

t 2
= J—

Howt =~ 12 (Lc) (core member buckling (3d)

wherek depends on the end conditions of the truss members. For

conservatism, we assume that the nodal connections between the

core members and the face sheets are pin-joinked1(), [11].

For convenience, each geometric parameter is normalizeél by

allowing the constraint functions to be rewritten in the nondimen-

sional forms:
___________________ v \'E ¢ 1 (face sheet yielding  (4a)
| —— < ace sheet yieldin
VEM/ oy tiHc ’

vV \?4321- 1) d2¢? _
<1 (face sheet buckling

VEM 4972 t3H,
)\ “

Vv \’E V3dL¢ o
Fig. 3 Tetrahedral unit with ligaments having rectangular \/— > Hwt <1 (core member yielding (4c)
cross-section. The directions of positive and negative shear EM y ¢
are indicated. 2 3

v |“12/3 dLie _

5 ;<1 (core member buckling
VEM/ k@ H.wt

sess their robustness, and compare the load capacity with predic- (4d)
tions, [11]; (iii) perform independent core shear measurementsa failure mode is considered active when the associated con-
and simulations to facilitate model validation. straint function reaches unity. As discussed be{Section 6, this

approach can be used to predict the load at failure initiation during

2 Basic Mechanics panel bending.

The four possible failure modes for the tetrahedral truss core
sandwich structure with solid face sheets are face sheet yielding,
face sheet buckling, core member yielding and core memb3r Sandwich Panel Construction
buckling, [11]. The face sheet failure modes are dictated by the Tryss cores can be fabricated from wrought metals by starting
bending moment per unit widthj. The associated constraints areyitn, perforated metal sheets and bending along diagonal nodes,

[11]: [19]. To illustrate the fabrication, commercially available 304
M stainless stedFe-18Cr-8Nj with hexagonal perforations was ob-
<o, (face sheet yielding (3a) tained from Woven Metal Products, In@Alvin, TX). The truss
tiHe members had widtlv=1.26 mm and thicknes$=0.59 mm. The
M 497°E  [t.\2 rectangular cross sectiorfahich have lower core performance
s—(_f (face sheet buckling (3b) than square sectiopsvere convenient for manufacturingl9)].
tiHe 432142 \d After bending(Fig. 4(@)), the core height wadd.=10 mm, such

— 1 mm

Fig. 4 (a) Tetrahedral truss core after shaping,  (b) typical core /face sheet bond
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Table 1 Geometric parameters for three point bending panels

| APFLIED COMPRESSION |

Parameter Dimension(mm) "

Core heightH, 9.8 r_l_
Face sheet thickness, 0.75

Truss member length, 12.2

Truss member widthw 1.26

Truss member thickness, 0.59

Span lengthS 202

Panel width,B 66

that the relative density wag=p./p=1.7%, (wherep. is the
density of the core angd is the density of the solid materjal
A brazing approach was used for attaching the face-sheets to

the cores. The cores were lightly sprayed with a powder compris- APPLIED
ing a mix of a polymeiNicrobraz® 520 and 140 mesh Ni-25Cr- SHEAR

10P alloy(Nicrobraz® 52, both supplied by Wal Colmonoy Corp.
(Madison Heights, Ml The solidus and liquidus of this alloy are
880 and 950°C, respectively, whereas the solidus of 304 stainless
steel is approximately 1400°C. The coated cores were placed be-
tween solid 304 stainless steel face sheets and a small compres-
sive pressure was applied. The panel assemblies were heated in
vacuum & 10 2torr) to 550°C for 1h to volatilize the polymir

The system was evacuated to less than®t6rr, and the tempera-

ture increased to 1100°C and held for 1 h. At temperature, the

alloy melts and is drawn into the core/face sheet contacts by cap-

illarity. Bonding then occurs as interdiffusion changes the local

composition, causing it to solidify. Robust joints with desirable | |

nodes ensuéFig. 4(b)). Upon bonding, the core height diminishes
slightly, to H,=9.8 mm, increasing the core relative densitypto Fig. 5 Shear test fixture assembly
=1.8%. This density is very close to that found for fully opti-
mized panels11].
For the panel bending assessment, a face sheet thickness Measurements and Observations

=0.75 mm, was chosen, exceeding that for the optimum structure,_. 6 sh the t ¢ trai f the 304 stai
[11]. For the core shear tests, much thicker face sheets were UFeelélgure Shows 1ne true stress-strain response of the stain-

— ; ; : SS steel. The material exhibits a 0.2% offset yield strenggh,
(ty=3 mm) to prevent distortions during the measurements. =217 MPa. The hardening rate beyond yield is almost linear up

. to a strain of 10% and can be characterized by a hardening modu-
4 Test Design lus, H=do/de =2.5 GPa.

After cooling to ambient, the panels were machined for testing. The shear stress/strain responses measured in the positive and
The flexure panels had span lengtB=202mm, width B negative orientationgFig. 7) demonstrate the asymmetry of the
=66 mm, and mass 0.22 Kgable 1. They were tested in three- tetrahedral truss core. In the negative orientation, the limit load is
point loading by using a procedure similar to that described else-
where,[19,22. Flat-faced loading platens 16 mm thick were ad-
hesively bonded to the faces of the panels. The loads were appl | Bilinear Approximation
through lubricated rollers inset into the platens that allowed tt
specimen to rotate upon bending, with minimal friction. The tes
were performed in a servo-electric test frame. The load and loe
point displacements were measured simultaneously. 450

The shear test assembly comprised two L-shaped platens t
rigidly held each of the two face sheets of the paikéy. 5. The 400
assembly was placed between flat loading surfaces connecte(®
the load cell and actuator of a servo-hydraulic load frame. ImpcE
ing a compressive load to the assembly created a condition v 3¢9
nearly pure shear at the truss core. The tests were performed 5
load point displacement rate of 0.1 mm/min. Displacements we{} 250
measured by a laser extensometer. Tests were performed in X
negative and positive orientations shown in Fig[18,20. In the «
positive orientation, one truss member is in tension and the ot 5,
two in compression and vice versa for the negative orientationc

A high resolution digital camera was connected to the testit™ 100
frame in order to capture side-view images of the core. The
images were used to identify the failure mechanisms.

500

350

200

The constitutive properties of the 304 stainless steel used in 1 Y I A B BT B
face sheets were measured after exposure to a simulated bon 0.00 0.02 0.04 0.06 0.08 0.10 0.12
cycle (1100°C for one hour Flat dog-bone-shaped tensile speci TRUE STRAIN. €

mens were tested at a strain rate of 4671.

Fig. 6 True stress-strain response for 304 stainless steel fol-
INote that the alloy powder remains adhered to the structure after volatilizatioowing annealing at 1100°C for 1 hour
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Fig. 7 Shear stress /strain response of tetrahedral truss core
panels in the negative and positive orientations

2.0

P =1.5kN
max
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Fig. 8 Load-deflection response during panel bending. The
open symbol represents the predicted load from Eqg. (5) at
which yielding occurs.

appreciably lower than in the positive orientation because the
most heavily stressed trusses are in compression and susceptible
to plastic buckling,[18,20. The maximum shear stress in this
orientation, 7,,,,=1.0 MPa, occurs at a shear strain of 1.4%, ob-
served to be coincident with plastic buckling of the compressed
members. In the positive orientation, the corresponding maximum
is Tmax=1.7 MPa, occurring at a shear strain of 13%. In this ori-
entation, the most highly stressed trusses are in tension. They
stretch and transfer load onto the compressed trusses, eventually
causing them to buckle plastically.

A load/displacement curve measured in bending is summarized
in Fig. 8. An approximately steady-state lod&,=1.5kN is at-
tained at displacements between 2 m#, <5 mm, followed by
gradual softening beyond 5 mm. An image obtained at the limit
load (Fig. 9 indicates that the response is asymmetric and that the
panel fails by core shear. That is, since the truss assemblies on the
left experience shear in the negative orientat{dg], failure oc-
curs through plastic buckling of the compressed members. The
buckling induces large strains that cause face sheet yielding and
result in the formation of a macroscopic plastic hinge at the outer
loading platen[1,20,24. In contrast, the right side experiences
positive shear. Consequently, the trusses stretch with relatively
small ensuing strain levels, inhibiting both face yielding and hing-
ing. After unloading, all of the core/face-sheet bonds were intact
with no visible cracking.

6 Finite Element Simulation of the Shear Response

The finite element simulation approach is similar to that de-
scribed by Hyun et a[.20]. The exact rectangular geometry of the
truss members has been used, as well as the measured stress/strain
curve for the facegFig. 6). The truss assembly and the finite
element mesh are shown in Fig. 10. The finite element code
ABAQUS has been used. The base of the truss assembly is fixed.
The top, where the assembly is bonded to the upper face, is dis-
placed parallel to the face, without rotation. The deformations of
the core that occur in the negative and positive orientations at
large displacements are shown in Fig. 10. They demonstrate the
plastic buckling of the compressed member in the negative orien-
tation and the stretching of the tensile member in the positive
orientation.

The shear stress/plastic strain relations calculated for the two
orientations are superposed on the experimental measurements in
Fig. 11. The similarity between the curves in both orientations
affirms the self-consistency of the present measurement and simu-
lation protocols and provides confidence in the scaling relations
(with relative density and core member aspect jatilmborated
elsewhere[11,13,2Q. There are two minor discrepancies. The
simulations generally underestimate the flow strength by a few
percent. Since the simulations use the stiffest possible boundary

Flat steel indenter

™ Span, S *

Fig. 9 Image of the panel obtained at the displacement indicated in Fig. 8. Note the plastic
buckling of the compressed truss core members on the left side and the associated plastic
hinge. The span was S=202 mm, the flat steel indenters were 16.0 mm wide and the overhang,

Nover=22.5 mm.
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Fig. 11 Simulations of the shear stress as a function of plastic
strain in (&) the positive orientation and  (b) the negative orien-
tation. The experimental measurements have been super-
posed.

Fig. 10 Finite element simulations showing the deformation . -
after shearing in () the positive orientation at ~ y,/=0.14 and (b) found to become active at the lowest load, wHép=V/EM

the negative orientation at  y,/=0.10. Note the plastic buckling =6.8x10"". The corresponding absolute yield load is
of the compressed member in the latter.

iy . o _ . P,=II?BES (5)
conditions, this difference implies that the material comprising the

truss members has higher strain hardening than that measured for
the faces. This may be attributable to chemical interactions beserting the panel dimensiori3able 1 into (5), the predicted
tween the braze alloy and the steel. The second discrepancyyield load become®,=1.25kN. This value corresponds closely
lates to the onset of plastic buckling in the negative orientatioto that measured at the onset of nonlineatfyg. 8), affirming
The simulation overestimates the stress at which this occurs that failure initiates in the core.

about 10%. This difference is associated with the imperfection

sensitivity of the buckling condition. Limit Load. The beam theory solution for the collapse load

of a sandwich panel in three-point bending with small overhang,
7 The Bending Response hovers IS given by,[1,22],

Initial Failure Load. By ins_ertingzthe geometric parameters ™ Zrhe analysis assumes, /E=0.001 andv=0.33. Further, for three point bend-
for the panelTable 1) into equation(4),” core member yielding is ing, ¢=S/2=101 mm.
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25@ 2h P, = vyield Ioa_d in three-point bending
PA:TUyJF 2BH Tmad 1+ ik (6a) S = three-point bend span length
t = truss core member thickness
The corresponding result for a panel with large overhang is, ty = face sheet thickness
[1,22], V = shear per unit width
B2 w = truss core member width
_co W = weight per unit area
B="g yT 2BHcTmac (60) 5 = displacement in three point bending
Here, the pertinent value of ., is that corresponding to the 5555 i Siifllgcst{?;nrange foPss
- ; - y
softer, negative orientation. The lower of the two loaHg, and Y. vy = shear strain and plastic shear strain, respectively

Pg, dictates panel bending strength.
Upon incorporating intd6) the measured shear strength in the
negative orientations,,,,x=1.0 MPa, the face sheet yield strength,

¢ = characteristic length scales(M/V)
WV = nondimensional weight index

oy=217 MPa, and the panel dimensidiable 1), the peak loads I 1 i Ic?:r?siltr;/dlcffe:mid material

are predicted to b®,=1.7 kN andPg=1.5kN. The lower value L — relative core density< p/p)

is virtually identical to the measured collapse load. The quality of P — density of core yxpelp
i C

the agreement suggests that simple beam theory models can ad- , = 0.2% offset yield strength

equately account for measured limit loads, provided that indepen-
dent information about the core shear strength and face strength is -
available.

7 = shear stress
= maximum shear stress
Poisson’s ratio

max
v =

8 Summary

Metallic sandwich panels with tetrahedral truss cores have beReferences

fabricated by deformation Shapmg and brazmg. The responses | 1 Ashby, M. F,, Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., and
core shear and panel bending have been measured. The resultSwadley, H. N. G., 2000,Metal Foams: A Design GuideButterworth-
demonstrate a robustness attributed to the wrought nature of the Heinemann, Boston, MA. ) .
material. Finite element models of the shear response duplicati! Clark, J. P., Roth, R., and Field, F. R., 199&chno-Economic Issues in Ma-
th tial feat H d . tallv. A m(e%v f terial Sciencel ASM Handbook Vol. 20, Materials Science and DesjgkSM

_e essenua _ea ures_ oun expe_rlmen ally. A s perce_n International, Materials Park, OH.
discrepancy Is attrlbu'[eq to incomplete _ understa_mdlng Of[3] Allen, H. G., 1969,Analysis and Design of Structural Sandwich Pan@ler-
the stress/strain characteristics of the material state in the truss gamon Press, Oxford, UK.
members. [4] Koiter, W. T., 1963, Koninkl. Nederl. Akademie van Wetenschappen, Ser. B,

. . - . 66, pp. 265-279.
When combined with the constitutive properties of the face g \yyichinson, J. W., “Plastic Buckliing,” 1974, Adv. Appl. Mechi4, pp. 67—

sheet material, the core shear characteristics have been used 10144,
predict the limit load for panels in bending by beam theory. The[6] Budiansky, B., 1999, “On The Minimum Weights of Compression Structures,”

closeness of the agreement indicates that such models are capa%l?'m- J. Solids Struct.36, pp. 3677-3708.

of adequately predicting limit loads, given independent informa-

tion about the core shear strength.

Acknowledgments
We are grateful to DARPA/ONR for the support of this work [10] Parkhouse, J. G., 1988tructuring: A Process of Material Distribution, Proc.

through research grants N0O0014-96-1-10@&gram manager, S.
Fishman and NO00014-01-1-0517 (program managers,
Christodoulou and S. FishmparAlso, we would like to thank S.

Chiras for performing the three-point bending experiment, and A

Jamieson for assistance in preparation of the figures.

Nomenclature

Gerard, G., 1956Minimum Weight Analysis of Compression Structuiéew
York University Press, New York.

[8] Tvergaard, V., 1973, “Imperfection-Sensitivity of a Wide Integrally Stiffened
Panel Under Compression,” Int. J. Solids Struét.pp. 177-192.

[9] Weaver, P. M., and Ashby, M. F., 1997, “Material Limits For Shape Effi-
ciency,” Prog. Mater. Sci.41, pp. 61-128.

3rd Int. Conf. On Space Structureld. Nooschin, ed., Elsevier, London, pp.
367-374.
[11] Wicks, N., and Hutchinson, J. W., 2001, “Optimal Truss Plates,” Int. J. Solids
Struct.,38, pp. 5165-5183.
Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F., and Wadley, H. N.
G., 2001, “The Topological Design of Multifunctional Cellular Materials,”
Prog. Mater. Sci.46, pp. 309-327.
[13] Deshpande, V. S., and Fleck, N. A., 2001, “Collapse of Truss Core Sandwich
Beams in 3-Point Bending,” Int. J. Solids Struc®8, p. 6275-6305.
[14] Fuller, R. B., 1961, “Synergetic Building Construction,” U.S. Patent,

B = beam width 2,986,241, 30.
d = base leg of tetrahedral truss assembly [15] Evans, A. G., 2001, “Lightweight Materials and Structures,” MRS BB, p.
_ \/—2—2 790.
(=VLE—HY) [16] Gu, S., Lu, T. J., and Evans, A. G., 2001, “On The Design of Two-
E = Young's modulus Dimensional Cellular Metals For Combined Heat Dissipation and Structural
Fn = shear force in negative orientation 17 ;Oakd Ea\fvadg'"trllgt' J. :eit MV?IS_S Tzransfe;#,E pp. 21i3—621725603 besian of
_ : " . - ok, F. W, Rathbun, H. J., Wei, Z., and Evans, A. G., , “Design o
FP shear forc? In pos't"’? orientation . Metallic Textile Core Sandwich Panels,” Int. J. Solids Strud0, pp. 5707—
hover = Overhang in three-point bend experiment 5722.
H = hardening modulus [18] Chiras, S., Mumm, D. R., Evans, A. G., Wicks, N., Hutchinson, J. W., Dhar-
Hc = core height masena, K., Wadley, H. N. G., and Fichter, S., 2002, “The Structural Perfor-
K = buckling constantl(:1 for pinned ends, 4 for T0a9n3cia4if1l5\lear-0ptlmlzed Truss Core Panels,” Int. J. Solids Str@8t.pp.
built-in ends [19] Sypeck, D. J., and Wadley, H. N. G., 2002, “Cellular Metal Truss Core Sand-
L = length of panel/beam wich Structures,” Advanced Engineering Materiad$10), pp. 759—764.
L. = truss member length [20] Hyun, S., Karlsson, A. M., Torquato, S., and Evans, A."G., 2003, "Simulated
M = moment per unit width Z(r)(()zpse)rt;eps %fgléggi%mgggd Tetragonal Truss Core Panels,” Int. J. Solids Struct.,
N = load per unit pe“pheral Iength for aX|a”y [21] Hutchinson, J. W., and He, M. Y., 2000, “Buckling of Cylindrical Sandwich
compressed curved panels Shells With Metal Foam Cores,” Int. J. Solids Stru@&7, pp. 6777-6794.
P = load per unit width [22] Bart-Smith, H., Hutchinson, J. W., and Evans, A. G., 2001, “Measurement and
_ ; ; Analysis of the Structural Performance of Cellular Metal Sandwich Contruc-
P, Pg collapse loads in bendlng for small and tion,” Int. J. Mech. Sci. 43, pp. 19451963,
large overhangs, respectively ) [23] Fleck, N. A., and Deshpande, V. S., 2004, “Blast Resistance of Clamped
Pss = steady-state load in three-point bending Sandwich Beams,” J. Appl. Mech(in press.

374 | Vol. 71, MAY 2004

Transactions of the ASME



Experimental Investigation on the
Plasticity of Hexagonal Aluminum
Honeycomb Under Multiaxial

Dirk Mohr Loadlng

Mem. ASME A new custom-built universal biaxial testing device (UBTD) is introduced and successfully
used to investigate the response of aluminum honeycomb under various combinations of
Mulalo DOVOVO large shear and compressive strains in its tubular direction. At the macroscopic level,
Mem. ASME different characteristic regimes are identified in the measured shear and normal stress-
strain curves: elastic |, elastic I, nucleation, softening, and crushing. The first elastic
Impact and Crashworthiness Laboratory, regime shows a conventional linear elastic response, whereas the second elastic regime is
Massachusetts Institute of Technology, nonlinear due to the generation of elastic buckles in the honeycomb microstructure.
Cambridge, MA 02139 Nucleation is the point at which the cellular structure loses its load carrying capacity as
a result of plastic collapse. It precedes a rapid drop of stress levels in the softening regime
as pronounced plastic collapse bands emerge in the microstructure. Formation and
growth of plastic folds dominate the microstructural response in the crushing phase. The
mechanical features of this phase are long stress plateaus for both the corresponding
shear and compressive stress-strain curves. Based on these observations, honeycomb
plasticity is established by making analogies of plastic hinge lines and folding systems in
the cellular microstructure with dislocations and slip line systems in a solid lattice, re-
spectively. The initial yield surface is found to take the form of an ellipse in stress space,
while the crushing behavior is described by a linear envelope along with a nonassociated
flow rule based on total strain incremen{OI: 10.1115/1.1683715

1 Introduction Ashby [3]. The in-plane behavior of honeycombs can be studied

. . on the basis of two-dimensional beam models. Thus, besides ana-
The cellular microstructure of a honeycomb is composed of a. . . . .
>If?tlcal expressions for elastic properties, closed-form solutions for
h

network of joined, paraliel, th[n-walled tubes..A.s a rgsult, hone e macroscopic yield loci for in-plane loading could be derived
combs are strongly orth.otroplc, thereby providing high mecha. Kiintworth and Strongd4]). Papka and Kyriakidegs] used a
_cal performance. per unit weight under shear and normal loadi o-dimensional beam model for the cell walls of the microstruc-
in the tubular _dlrectlon. Among the three ort_hotr(_)py axes of ﬂ}%re to reproduce the complex deformation modes of polymeric
honeycomb microstructure the tubular or T-direction is the Stroﬂbneycombs under biaxial in-plane loading. The response of a
g_est Q|rect|on. As comparepl .to Ipaqlmg in the wee}ker '.n'plaqﬁetallic honeycomb to uniaxial compressive loading in the
directions(W and L), the varlatlpn In '“te”.‘a' energy 1 t_yp|c_ally T-direction was studied in detail by various authors and an ana-
by one to two ord_ers of magnitude as _hlgh_upon Ioadmg_ N Mical expression for the mean crushing stress was presented by
T-direction. Combined out-of-plane loading, i.e., combinations cFarland[6] and Wierzbicki[7]
normal and shear stresses in the T-W and T-L—planes, is a CharHowever, little is known on the mechanical behavior of metallic
acteristic of most engineering applications of honeycomb_s. In P35neycombs under combined out-of-plane loading. Standard test-
ticular, the mechanical response of honeycombs to plastic OUF'E% techniques such as the combined compression-torsion Taylor-
plane deformations is of growing interest for industriagy,iney tests on cylindrical specimens are not suitable for honey-
applications. Traditionally, sandwich structures are designed f@5mps, where the orthotropy axes are aligned with the Cartesian
elastic loading scenaride.g., Allen[1]), but recent studies on the ¢, rginate system. Other experimentalists report premature failure
crushing of sandwich profiles have shown the merits of thin sangf ihe pond between the honeycomb and loading platens when
wich sheets in crashworthiness applicatiofesg., Mohr and performing shear tests according to the ASTM Standard C273
Wlerzblck_l [2]). Other industrial applications include the form'ng(HexceI [8]). Uncontrolled localization of deformation in double
of sandwich floor panels for passenger cars or the use of hon@kear |ap honeycomb specimens subjected to combined shear and
combs sandwich structures for the hood of a car, where the desigma| loading generated unacceptable noise in the corresponding
for the accidental impact of a pedestrian requires in-depth knovgce displacement curves\Vierzbicki [9]).
edge of the plasticity of metallic honeycombs. Recent findings indicate that the use of the Arcan apparatus in
A summary on various honeycomb properties is given in th@e clamped configuration allows for the biaxial testing of honey-
textbookCellular Solids: Structure and Propertidgy Gibson and combs(Petras and Sutcliff§10]). Based on the detailed analysis
- of this testing configuratiorfMohr and Doyoyo[11]), the en-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  hanced arcan apparat(EAA) was developed for the biaxial test-

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME- . . .
CHANICS. Manuscript received by the Applied Mechanics Division, Mar. 25, 2003l,ng of cellular materlal$M0hr and Doyoyd[lZ]). The underlylng

final revision, July 23, 2003. Assaciate Editor: M.-J. Pindera. Discussion on the pag@ncept is to perform fully displacement-controlled tests, thereby
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligsiypassing problems due to the localization of deformation in hon-
Mechanics, Department of Mechanical and Environmental Engineering, Univers'k%{:ombS The EAA has been successfully used to measure the

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepiet . | fail I f alumi h .
until four months after final publication in the paper itself in the ASMEJENAL OF initial failure envelope of aluminum honeycomb subjected to

APPLIED MECHANICS. combined out-of-plane loadingoyoyo and Moh(13)).
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between two faceplateg§ig. 2). The faceplates serve as grips to
mount the specimen onto the testing device. An epoxy adhesive
(Lord 310A/B) was used to bond the honeycomb onto roughened
aluminum grip plates. The specimen width Igf=80 mm was
predefined by the size of the biaxial testing device. This corre-
sponds to 16.5 honeycomb cells along the W-direction. The width
along the ribbon direction; =52.8 mm, was chosen according to
the recommendation of ASTM C273. Two opposite aspects had to
be taken into account for the choice of the specimen height: As a
result of the bonding technique employed, the cell walls are em-
bedded into an adhesive layer; thus, to minimize the influence of
the adhesive layer on the test results, the specimen height should
be large as compared to the up to 1 mm thick bond line. On the
other hand, under shear loading, a large width to height ratio
Iw/C (i.e., a small specimen heighis desirable to guarantee a
homogeneous stress field along the W-direction. Here, a height of
C=15mm is chosen for the sandwich specimen.

Fig. 1 Top view of the sandwich specimen before being We will test the specimens under combinations of normal and
bonded to the second grip plate. The insert shows a schematic shear loading in the T-W-plane. Alternatively, the specimens
of a single honeycomb cell. The shaded rectangle highlights could have been prepared for testing in the T-L—plane. Note that
the nature of the microstructure. when calibrating transverse isotropic constitutive models from ex-

perimental data, the use of the normal-shear interaction curves
found from experiments in the TW-plane results in an underesti-
Following the concept of the EAA, we present a new testinmation of the energy absorption of honeycombs, while models

device called the universal biaxial testing devitlBTD) to study calibrated from T-L data will rather overestimate the energy ab-
the post-yield behavior of aluminum honeycomb under combinedrption. In practical applications, the underestimation of the en-
out-of-plane loading. Two force components are measured to degy absorption is preferred, and thus, as a first step, we limit our
termine the macroscopic stresses in the sandwich specimen. dtention to the T-W-plane.
in-depth discussion of experimental observations discloses the na; L . .
ture of microstructural deformation mechanisms that determin(?z'3 Homogenization. We dISCUSS. the mechanical response
the mechanical behavior. It is found that a folding system conl Metallic honeycomb on two scales: On the macroscopic level,
posed of plastic hinge lines and compatibility zones determin gneycomb is described as a homogeneous material, _vvh_er_eas on
the plasticity of a metallic honeycomb under quasi-static loadin e mlcrostructural_level the cellular microstructure and individual
At the same time, the following observations are made on t 8" walls are considered.

; P ; ) The honeycomb microstructure is periodic along the in-plane
macroscopic level{1) an elliptical yield envelope defines the on- . - o - e
set of mié)rostructural coIIaF:)sé,Z)ya linear inr?er envelope de- directions W and L. The characteristic length of the periodicity is

scribes the stress level under large deformations,(8nd nonas- the honeycomb cell sizB (see Fig. 1. Thus, successful modeling

sociated flow rule characterizes the relationship between str@hhe honeycomb by its homogeneous equivalent requires the
increments and the stress state. macroscopigstructura) scales\y,, A\, along the in-plane direc-

tions to be large as compared to the cell size, Ag;/D>1 and

. o A /D>1. For example, for the present specimen, we hrye

2 Specimen and Homogenization =80 mm, A\ =52.8 mm, and=5 mm and thus\,,/D=16 and
21 Material. Aluminum 5056-H39 foil is the base material L /D= 10. Experimental results described below reveal that this

for the cellular structure of the tested honeycomb. The foil thickorPhological in-plane periodicity is preserved under inelastic
ness ist=33um. The hexagonal microstructure is produced iQUt-0f-plane loading. In other words, on the macroscopic scale,
the expansion process. Cell walls initially aligned with th&@°th the undeformed and deformed configurations of the honey-
L-direction (ribbon direction are bonded together and thus are ofOMb microstructure are statistically homogenous in the W-L—
double thicknesginset in Fig. 1. Their width is h=2.4mm, Plane. o ]

whereas the width of the single-thickness walls4s3.1 mm. The _ In contrast, significant morphological changes occur along the
cell wall expansion angle as defined in Fig. Bis40°. The initial T-direction when the microstructure is subjected to combined out-

density isp,=46.5 kg/n?, which corresponds to a relative density®f-Plane loading. Note that in sandwich applications, the macro-
O (\nri : : ; scopic scale along the T-directioxy, is given by the core height,
of 1.8% (with respect to the density of solid aluminum Ar=C. Initially, the cell walls are straight along the T-direction.
2.2 Specimen. For the present study, we perform combinedHowever, in particular under compressive loading, localization of
compression and shear tests on sandwich specimens. In this aeformation and plastic collapse bands dominate the microstruc-
figuration, a honeycomb core of constant height is sandwich&gtal responséMohr and Doyoyd 14]). The microstructure loses

<grip plate(top)
adhesive
layer

<«grip plate(bottom)

honeycomb
core

Fig. 2 Schematic of the sandwich specimen
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its statistical homogeneity along the T-direction and beconegs
erogeneous on the macroscopic scdlbus, size effects may arise
according to the representative volume elem@&WE) chosen to
characterize the macroscopic behavisee, e.g., Framis et al.
[15)]).

The macroscopi¢engineering strain tensok is introduced as
the spatial mean of the local strains in the RVE. Under combined
out-of-plane loading, we assume the following form of the strain
tensor:

1
E=e(er@er)+ 5 yr(eree +e ®er)

1
+ 5 ywer@ eyt ey®er) @)

where €r,€_,6y) is an orthogonal unit vector basis aligned with
the initial orthotropy axes of the honeycomb. Equatibnimplies

that the elastic and plastic Poisson’s effects are neglected. Here,
we assume the sandwich specimen height as a characteristic
length of the RVE along the T-direction. Thus, the macroscopjfg. 3 Schematic of the universal biaxial testing device
strains are directly given by the displacement field (uy) ap- (UBTD)

plied to the top boundaries of the specimen. The normal strain

reads

ur 3.1 Mechanical Details. The design of the UBTD is based
&= (2) on the concept of the enhanced arcan apparéstes Mohr and
Doyoyo[12]). A schematic of the UBTD is given in Fig. 3. The
Under combined loading in the T-W—plane, we ha#ge=0 and specimen is placed between the fixed and movable parts of the
yrw= "7, Where apparatus. The movable part is allowed to slide along the vertical
direction (y-axis) only. All other degrees of freedom of the mov-
able part including rotations are restricted. The inclination of the
specimen with respect to the loading a@isdirection determines
It follows from the loss of statistical homogeneity along thdh€ combination of applied shear and normal displacements. This
T-direction that the choice of the specimen heightight affect Inclination is measured by the biaxial loading angl¢angle be-
the observed macroscopic response. A detailed study of this p€en theW-axis andy-axis in Fig. 3. The corresponding normal

y=. ®)

tential size effect is left to future research. and shear displacements are
The energy conjugate stress ten2oreads: ur=uysina ()]
Y=o(er@er)+ o (er®e +e @ep)+ rrpler@eyt evv®er)(-4) Uw= Uy COSa 8)

hereu, denotes the vertical displacement. In other words, the
axial displacement field on the top boundary of the specimen is
"iﬂfiquely characterized by the biaxial loading angle and the result-
nt displacement. Note that the biaxial testing angle is fixed
Toughout testing, whereas the resultant displacement is pre-
scribed, which limits the experimental capabilities to linear load-

Note that due to the significant orthotropy of the honeycomi\é\;
in-plane stress components are typically about two orders of m
nitude smaller than out-of-plane componesits, and 7y, and
thus are neglected in our discussion. In the present experime
we haver; =0 and

Fr ing paths in terms of displacements. As shown in detail by Mohr
o= (5) and Doyoyo[11], reliable testing requires the measurement of at
0 least two force components in the testing plane. The UBTD moni-
and tors three force components throughout testing: the horizontal
F forces F{! and F{?, and the vertical forcéF, (Fig. 3. From
= _w (6) static equilibrium, we find the normal and shear force compo-
Ao nents,F; andF,y, acting on the sandwich specimen:
where m:=11y. Ap=IlwXI_ is the cross-sectional area of the _ () E(2)
sandwich specimerf; andF,y are the normal and shear forces Fr=Fysina=(F+F)cosa )
acting on the specimen. Fw=F, cosa+(F{V+F?)sina (10)

3.2 Technical Details. A picture of the UBTD is shown in
. Fig. 4. Within this section, we denote the part numbers according
3 Experimental Procedure to Fig. 4 in parentheses. The UBTD is designed as an integral

Previous work demonstrated that displacement-controlled tetsting frame that provides the function described above. The
ing procedures are most suitable to investigate the mechanioadvable part of the devicél to 5 slides vertically on four ball
behavior of honeycombé&Petras and Sutcliff¢10] and Doyoyo bearings(5) along two fixed guidance rod$). Parts(7) to (13
and Mohr[13]). The control of all displacements during testingoelong to the fixed portion of the device. The bottom pla is
avoids undesirable deformation modes due to localization in ceigidly connected to the table of a universal testing machine
lular solids(Mohr and Doyoyd[12]). Here, the universal biaxial (MTS, Model G45, Eden-Prarie, MNA universal joint(2) con-
testing device(UBTD) is used to apply combinations of largenects the movable gripl) to the screw-driven crosshead of the
compressive and shear displacements to the boundaries of a hariversal testing machine. A set of removable clarfdg$0 posi-
eycomb specimen. All tests are performed under quasi-static lodidned the specimen in the center between the movable and fixed
ing conditions. part of the device. Four screws on either side provided sufficient
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Fig. 5 Detail of how the horizontal load cell is integrated into
the top plate (labels are consistent with the captions of Fig. 4 )

formation in the grip plategHenn [16]). After clamping, the
crosshead was adjusted such that the vertical load was(E&ro
Fig. 4 Photograph of the UBTD (front view ): 1-movable grip 6). However, from the nature of the testing method, an initial

plate, 2-universal joint, 3-rotating specimen holder (top),  offset in the horizontal force measurement is inevitable. For the
4-positioning clamp  (top), 5-roller bearing, 6-sandwich speci- present 60 deg tests, the horizontal preload load ranges from 170
men, 7-fixed grip plate, 8-vertical guidance rod, 9-rotating to 300 N (see the encircled region in Fig).7All tests are per-

specimen holder (bottom ), 10-positioning clamp (bottom ), 11- ¢4 :meq at a constant crosshead velocity of 1 mm/min. Pictures are

gobr?ep(lja;ges,sﬁi;)dot;ogngI?ltg_,t;;;L\éPfE(elél;?)rst!scileggd cell (mov- taken at different stages during the test. The tests were paused for
' image acquisition, which generated small relaxation drops in the

load (Fig. 6). Furthermore, two unloading/reloading cycles are
. o . . . typically performed at large strains.

clamping pressure. The inclination of the specint@nis set prior Comparison of the horizontal force measurements reveals that,

to testing by rotating the specimen holde89). Tests can be afier the vertical load is applied, a difference develops between

performed at any biaxial loading angle between 0 and 90°, with § two horizontal force components. Under compressive loading,

increment of 1 deg. . o the force acting on the bottom load cell is higher than the force
A linear variable differential transforme(l3) built into the

UBTD measures the relative displacement between the movable
and fixed portion of the device. This measurement provides the

resultant displacement acting on the specimgn, assuming the sk cisplexcement{fnj)

UBTD to be rigid as compared to the honeycomb specimen. Di<"° . 6 N 2 0 0
placements ranging from 10 mm to+10 mm are allowed by the

current design. The vertical forde, is recorded by the standard unloading/ L 1000
load cell(14) of the universal testing machif200 kN MTS load reloading

cell). The horizontal forces are measured by two DC-DC loac - 2000
cells (Sensotec, Model 3lintegrated into the topll) and bottom = 2000
plates(12) of the fixed portion of the UBTD. Figure 5 shows [ §
details of the integrated horizontal load cell. The load cells hav L 4000 &
been calibrated as built in for a total horizontal load of up to 3 kN §
The accuracy of the horizontal load measurement at room ter --5000 3
perature is=2%. o0

3.3 Sample Tests. We present the results from tests at
60deg to illustrate the testing procedure. Recordings of the vert - -7000
cal force and the two horizontal forces are shown in Figs. 6 and
All force readings are set to zero before the sandwich specimen s
placed between the adjusted rotating specimen holders. COMPE&s- g vertical force  (MTS load cell ) versus vertical displace-
sive stresses arisgoredominantly along the T-direction as the ment (LVDT) for tests under 60 deg loading. The encircled re-
clamping pressure is applied to the short sides of the specimgen highlights an example for minor drops in the load curve
grip plates. This may be explained by constrained Poisson’s derile the test was paused for image acquisition.
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Vertical displacement (mm) Shear strain (-)

-10 8 % 4 2 0 1.0 08 06 ) 0.2 0.0
L 1 1 1 1 1 15m 0°| 1 1 1 0.0
—— test#1 ‘\
1250 o tension
10°—— o
test #2 e 0.2
I 1000 5
z 20 L 04 &
+ 750 B 3
ﬁ ] ’ 2
/ 2 30° 3 g
/ g compression 06 O
unloading/ - 500 g <) 5
i x=1 X< =
reloading = -
)0 ~ 0.8
‘‘‘‘‘ / . 40°
-0
top load cell preload 5 Lo
G 5 . o 5 5
L 250 45 50 60 70 80 90

Fig. 8 Linear strain paths for various biaxial loading angles.
The transition curve labeled x=1 cuts the domain into the ex-
pected compression and tension regimes.

Fig. 7 Plots of the horizontal forces measured during tests
under 60 deg loading. Note the two groups of curves: The up-
per and lower groups represent the recording of the horizontal
force in the bottom plate and top plate, respectively.

to this consideration, tests at loading angles above 45 deg should

. . L . nly generate compressive stresses whereas tests at lower loadin
acting on the top load cell. This observation is explained as fog- Y9 b g

lows: Suppose that the resultant reaction force in the deform ngles should exhibit compressive stresses first before tensile
WS: Supp ultar ! n the 'Wesses build up. We therefore split our upcoming discussion into
specimen acts at the geometric center of the specimen. At

ame time. note that. throuahout testing. the geometric center parts: The first part focuses on the observations made for tests
S Ime, » througnout testing, g e ?Iarge biaxial loading angles where the stress state is exclusively

the specimen moves with respect to the mechanical center of fhe, = compression-shear quadrant, while the second part de-

itﬁsnggsd(eg;eié)TvCiet)kﬁﬁzréser?tzfrllri]r?g kt:gtw:elgttehr:elﬁgﬁgo%ftg]‘Isotae(% “ribes the observations for tests at small loading angles where
9 Y ensile stresses emerge at large displacements.

cells (dashed horizontal line in Fig.)3Thus, due to this motion,
an eccentricity of the resultant force with respect to the load cells4.1 Compression-Dominated Crushing. Figures 9-11
emerges. As a result, a torsion moment acts on the horizongalow the mechanical response curves for large biaxial loading
bearings, which is counterbalanced by a pair of horizontal forcesngles. We discuss the results from tests under 60 deg and 80 deg
reducing the load on the top load cell and increasing the load wading as examples of crushing under compression and shear
the bottom load cell. Also heterogeneity of deformation inside thstresses. A sequence of photographs taken during both tests is
specimen is expected to contribute to the torsion moment. Hoshown in Figs. 12 and 13. In the mechanical response curves, the
ever, this effect has no influence on the total horizontal forasrresponding picture points are denoted by symbols labeled by
|:§1)+ |:§2), which appears in the expressions for the averaggnall roman letters. The undeformed specimen configuration is
shear and normal stressesge Eqs(9) and (10)). denoted as, while successive deforming configurations are de-

It must be noted that the present experiments are highly repeagted asb, c, d, e, andf, respectively.
able, irrespective of the biaxial loading angle. Very little scatter is First, consider the normal stress-strain curves in Fig. 9. Initially,
observed in the force-displacement curves in Figs. 6 and 7. Chire compressive stress rises linearly with stigabeled as elastic
acteristic features of those curves including force extrema or lodal until the response becomes slightly nonlinear as it can be seen
changes in slope are almost identical for different specimerfgom a continuous decrease in slope in the regime labeled as elas-
This consistency emphasizes the overall reliability of the preseit Il. Pictures taken at poirlt show a pattern of shallow buckles
experimental procedure including specimen dimensions and

preparation.
Normal strain (-)

4 Experimental Observations 05 04 03 02 01 00

Tests are performed on the honeycomb with the UBTD at 0, 1C a
30, 40, 50, 60, 70, 80, and 90 deg loading. Large displacemen 40° ./ . fa 0.0
are applied in the negative y-direction. Recall that from the natur — L
of the experimental setup, strain paths remain constant througho s0*—___ . | N elastic |
each test. In other words, the normal strain is proportional to th . U z
shear strain, and the proportionality factor is determined by th 76(3;W i 3
biaxial loading angle from the relatioa=ytana. All macro- O N L 10 ;—’
scopic strain paths are in the quadrant of negative normal strair 99 elasticl [ F
and negative shear strains. Consequently, all elastic stress sta ﬁ
are in the compression-shear quadrant of the stress space. Ha L 15 5
ever, under largécompressivg strains, tensile stresses develop L
for small loading angles. The generation of tensile stresses i a go° picture points — b
small testing angles may be explained as follows. Consider th & go° picture points nucleation ¥ 2.0
total stretchy= /(1 + )2+ 72 that expresses the ratio of current

to initial length of a fiber initially aligned with the T-direction. We

anticipate that tensile stresses occuryit1, and analogously, Fig. 9 Normal stress-strain curve for large biaxial loading
compressive stresses occur k1. The transition curvey=1 angles. The corresponding pictures for 60 and 80deg are
along with the various strain paths is plotted in Fig. 8. Accordinghown in Fig. 12 and Fig. 13, respectively.
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Fig. 10 Shear stress-strain curve for large biaxial loading
angles. The corresponding pictures for 60 deg are shown in

Fig. 12.
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Fig. 11 Shear stress versus normal stress curve for selected
(60,80 deg)

large biaxial loading angles
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that developed in the elastic Il reginfEigs. 12b), 13(b)). As the

peak stress is overconflabeled as nucleationthe compressive
stress steadily drops with strain. This phase denoted as softening
is associated with the stable plastic collapse of the cellular micro-
structure under compressive loading. We emphasize that plastic
collapse is a stable event as confirmed by the photographs in Fig.
18 (to be discussed in detail lajeMechanically, this stability is
manifested by the small scatter on the measured nucleation
stresses and the maintaining of a constant stress level when the
tests were paused for image acquisition in the softening plsase
points “c” in Fig. 9). Observe from the acquired photographs
(Figs. 12d) and 13d)) that a characteristic collapse band becomes
visible in the honeycomb microstructure throughout the softening
phase. Consequently, we refer to the peak stress as a nucleation
stress for collapse bands in the microstructure. For loading angles
60, 70, 80, and 90 deg, the compressive stress reaches a local
minimum ate* = —0.05+.005 ando™ =—0.6=.05 MPa. Then the
compressive stress remains either constémt 60 deg or in-
creases to attain a constant plateau level, which is a property of
the crushing regime The plateau level is initiated at a normal
strain of approximately £ .

The shear stress-strain curves show similar characteri{§ligs
10). Both the elastic | and elastic Il regimes are identifiable before
a peak shear stress is reached. Furthermore, all the shear stress-
strain curves exhibit significant softening between the nucleation
point and the local minimum before a stable crushing regime is
reached at a more or less constant stress level. However, in con-
trast to the nature of the compressive stress-strain curves, the
minimum shear stress reached at the end of the softening regime
varies significantly with the loading angle.

Figure 11 shows the correlation between the normal and shear
responses in stress space. Consider the plots for 60 and 80 deg
that describe the mechanical response at large loading angles. The
sharp turning point in Fig. 11 shows that both the compressive and
shear stresses decease almost simultaneously. To be exact, note
that the loop turns clockwise, which implies that the shear stress
decreases before the compressive stress reaches its maximum
magnitude. The same conclusion is drawn for the next turning
point: The shear stress reaches its minimgwint “c” ) ahead of
the compressive stregsoint “d” ). The shaded circle at the end of
the 60 deg curve in Fig. 11 highlights the crushing regime. Spe-
cifically, the center of the shaded circle corresponds to the mean
crushing stresses whereas the diameter can be interpreted as the
maximum amplitude of fluctuations in stress relative to the mean
value in the crushing regime.

Fig. 12 A sequence of photographs of hexagonal aluminum honeycomb during bi-
axial loading at 60 deg angle at different resultant displacements. Note the develop-
ment of collapse bands into plastic folds under load. The measurements next to each
figure represent the magnitudes of the resultant displacement at each picture point.
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Fig. 13 A sequence of photographs of hexagonal aluminum honeycomb during bi-
axial loading at 80 deg angle at different resultant displacements. Note the develop-
ment of collapse bands into plastic folds under load. The measurements next to each
figure represent the magnitudes of the resultant displacement at each picture point.

4.2 Tension-Dominated Crushing. The mechanical re- Thus, the normal stress-strain curves cross the abscissa axis de-
sponse curves for low biaxial loading angl@ 10, and 30 deg noting that the tensile stress is generated during crushing at small
are shown in Figs. 14 and 15. The normal stress-strain dlige loading angles.

14) clearly shows that the normal stress changes from the state oNow consider the shear stress-strain curves for small testing
being compressive to that of being tensile at large strains. Tlasgles(Fig. 15. Again, we distinguish between the elastic | and
compressive-to-tensile stress transition occurs right from the badastic Il regimes as the initial response becomes nonlinear. In
ginning of the test under 0 deg loadifigote that point b” lies  contrast to all the other tests, the shear stress-strain curve for 0Odeg
above point ‘@” in Fig. 14). For 10 and 30 deg loading, theloading does not exhibit a softening regime, but instead it remains
compressive stress initially increases to a peak value and ttemstant first and then increases monotonically until fracture lim-
decreases with strain as the transition to tensile stressing takeshe load carrying capacity of the specimen. At poibt Shear
place at larger strains. The increase of the compressive stress btuekles have formed in the microstructyfég. 16b)). However,
peak value is analogous to the mechanical response at large Idad-y>1 the cell walls aligned in the L-direction are stretched
ing angles. However, the subsequent softening phase is mnather than folded, thereby providing a significant contribution to
bounded by some local minimum because the compressive strigsshear strength of the microstructure. Fracture of the cell walls
continues to decrease until the normal stress becomes tensilecurs in the vicinity of the bond line between the specimen and
the grip(see ellipse in Fig. 1)).
The shear stress-strain curve under 30 deg loading is similar to

Normal strain (-)

-0.20 0.15 -0.10 -0.05 0.00 Shearstrain (=)
L i 1 . I L 1 L ! 15 -0.3 -0.2 -0.1 0.0
L 1 n 1 n 1 n 1 0.2
fracture 0° fa
' e [ ’ Ta oo
/ elastic 1|
///\ Los & ) / S
5 tension . /, \ f 3 10\. / oL
30 f / 10™ tension \ o \\ 2
eV _ —\ 4 a F-0.4 ¢
""""""""""""""""" Siiaee S . e g crushing =
e ~—_ |\ #c 4 i elastic Il 2
- P’ = . R b 0.6 =
Vi Gy Yo =
Vf L05 & 30 =
f = \ b ©
J: =~
J: I \\ --0.8
m  0° picture points C\ 4&
A 30° pict int nucleation /\J/ i 1.0
picture points (compression) L ®  0° picture points € hardening --1.0
A 30° picture points fracture
Fig. 14 Normal stress-strain curve for low biaxial loading
angles. Note that all data points O deg lie on the ordinate axis. Fig. 15 Shear stress-strain curve for low biaxial loading
The corresponding pictures for 0Odeg and 30 deg are shown in angles. The corresponding pictures for 0 and 30 deg are shown
Fig. 16 and Fig. 17, respectively. in Fig. 16 and Fig. 17, respectively.
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Fig. 16 A sequence of photographs of hexagonal aluminum honeycomb during bi-
axial loading at 0 deg angle at different resultant displacements. The measurements
next to each figure represent the magnitudes of the resultant displacement at each

picture point.

the response for large loading ang(Egy. 15. A pronounced peak compression and shear loading, plastic hinge lines nucleate, move,
stress is observed before a collapse band forms in the softenérgl pile up in the cellular honeycomb microstructure. The mecha-

regime (Fig. 17c)) and the shear stress level remains approxiisms postulated below apply to the compression-dominated be-
mately constant in the crushing reginfigig. 15. The shear re- havior and are supported by the representative photographs ac-
sponse to 10deg loading show combined features of the responggged from a test performed at 60 deg loadifigs. 18a)—(d)).

at small and large loading angles: The shear stress curve shows gnder out-of-plane loading, the elastic membrane stress state in
peak value and a softening phase similar to large angle testing, j4¥ injtially flat cell walls is that of combined shear and compres-

it gradually increases without ever reaching a plateau value untjl,, (Kelsey[17]). The driving force of buckling at the micro-

fracture occurs just like during the Odeg testifgg. 15. structural level is the principal compressive stress in the thin cell
. walls. Thus, as the local, principal compressive stresses exceed a
5 Honeycomb Plasticity threshold value, elastic buckling of the cell walls occ(as the

Here, we propose that the honeycomb equivalence to dislocaacro level, this is denoted by the transition from elastic | to
tion motions in metals is plastic hinge lines. Under combineelastic Il regime. The load distribution within the microstructure

f

Fig. 17 A sequence of photographs of hexagonal aluminum honeycomb during biax-
ial loading at 30 deg angle at different resultant displacements. The measurements
next to each figure represent the magnitudes of the resultant displacement at each

picture point.
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hinge lines;

(d) u=-5.05mm

Fig. 18 Representative photographs of collapse mechanisms of the compression-
dominated crushing illustrated with the observations made at 60 deg loading

changes dramatically. With the formation of buckles, the strestretching in the compatibility zones are two competing mecha-
state changes in the affected/deflected regions from the membraismns that determine the kinematics of a folding system. From
stretching-dominated state to the bending-dominated $Eite Alexander’s postulatéAlexander[20]), it follows that the plastic
18(a)). As a result, the honeycomb loses stiffness at the macioinge lines naturally change orientation and move such as to mini-
scopic level, which explains the convex nature of the macroscopituze the overall plastic dissipation in a folding system.
stress-strain curves in the elastic Il regime. However, at the samerhe compatibility zones in the honeycomb microstructure act as
time, the membrane stresses increase in the immediate vicinity“gfain boundaries of a honeycomb.” Hinge lines typically end in
the intersection line between neighboring cell walls, where defleifite compatibility zonegpile up). At the same time, new hinge
tions are prohibited. The macroscopic peak load is rea@hadle- lines are generated in this critical region, thereby activating other
ation) when the membrane stresses at the intersection lines satigflyling systems. This may be viewed as a reflection of a hinge
the yield condition of the cell wall materidvon Kaman et al. line. Also note that the compatibility zones are crucial for the
[18]). Beyond this point, the buckles no longer disappear upatrength of a honeycomb: The bending process along a plastic
unloading. Instead, they are “frozen” by the surrounding plastiinge line alone is almost catastrophic, i.e., the plastic dissipation
cally deformed undeflected regions. per unit displacement decreases dramatically during ber{digg

Subsequently, the depth of the buckles increases further witVierzbicki and Abramowicz19]). However, the compatibility
loading while the bending deformation becomes plastic and faenes typically exhibit the opposite behavior: the plastic dissipa-
cuses along thelastic hinge lineswithin the microstructure. At tion per unit displacement increases as folding proceeds, until
this stage, the buckles become clearly visible without magnificaecking, brittle fracture or intracellular delamination limit the load
tion. However, the formation of plastic hinge lines is prohibited atarrying capacity of the compatibility zones.
the cell wall intersections. We call these intersectioospatibil- Although the analogy between the folding system in a honey-
ity zonesand they are regions where bending is restricted by tlm®mb and the slip line system in metals can be made, one funda-
requirement of compatibility between the deformation fields of theental difference shall be emphasized: The slip line systems in
adjacent cell wallgFig. 18b)). At large macroscopic deforma- metallic crystals are predefined in the undeformed lattice, whereas
tions, the microstructure locally folds along plastic hinge lineshe folding systems in metallic honeycombs are deformation in-
whereas compatibility between neighboring cell walls is achievetliced. In other words, hinge lines nucleate and folding systems
at the expense of plastic membrane deformation in the compfirm according to the applied macroscopic deformation field. This
ibility zones. We refer to a system of plastic hinge lines and condfference is crucial with respect to constitutive modeling, and
patibility zones that allow for the folding of the microstructure aposes an exciting challenge for future research. At the same time,
a folding systemNote that among all the evolving plastic hinget should be noted that the nucleation of folding systems relies on
lines, only a few contribute to the active folding systéFig. the local plastic collapse of the microstructure and thus, based on
18(b)). A collapse bandnay be seen as a series of active foldingon Karman’s model for the collapse of thin platégon Karman
systems. Figure 18) illustrates the localization of microstructuralet al.[18]), it is expected that folding system characteristics such
deformation within collapse bands while the microstructure abows the plastic hinge line orientation can be controlled by the
and below undergoes a rigid body translation. New folding syshoice of the microstructural properties such as the ratio of cell
tems are set in motion as the cell walls of the active folding/all width to cell wall thickness.
systems contact each other, thereby raising their crushing resis-
tance beyond the activation threshold for a new collapse bagd Ph . .
(Fig. 18d)). enomenological Modeling

Previous work on the crashworthiness of thin-walled structures The focus in this section is on the phenomenological analysis of
(e.g., Wierzbicki and Abramowicf19]) suggests that the energycompression-dominated crushing. This choice is made with prac-
dissipations due to bending along plastic hinge lines and duetical applications in mind: one would expect the honeycomb core
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O From a fit of Eq.(11) to the data, we find the yield stress under
A uniaxial compressiomry=—2.08 MPa and the shear yield stress

under pure shear,=0.76 MPa. It follows from the morphologi-

* cal orthotropy of the undeformed microstructure that the initial

: § yield envelope must be symmetric with respect to shear. However,

= Eq. (11) is only valid for compressive stress@s<0). Under ten-

L 04 & R . . .

3 sile stresses, the microstructural deformation mode is expected to

_0.5% change, which might require a different phenomenological de-

I scription on the macroscopic level.

crushing

(J4
envelope 40 H

6.2 Crushing Behavior. In our discussion of the experi-
mental observations, the crushing phase is characterized by more
or less constant normal and shear stress levels. We define the
L-08 crushing stresses and r as means over the respective energy
conjugate strains:

initial collapse
envelope

Fig. 19 Initial collapse and crushing envelopes in stress

space. The square dots are experimental data points. The vec- — 1 Emax
tors indicate the direction of plastic flow during crushing, 0= Toer |, ode (12)
whereas the dashed straight lines starting from the origin pre- max 2z
scribe the direction of plastic flow according to the simplified and
flow rule given by Eq. (15).
[ J " (13)
T= Tdy.
Ymax— 2 ¥* 2y* 7

The characteristic intervdl2e* ,e,4] determines the length of
. . . o the crushing phase. Based on the experimental results, we suggest
in a sandwich panel to experience largely a combination of comizx — _ 1 ande,,,,=—0.5. The corresponding shear strain inter-
pressive and s_hg_ar stresses rather tha_n_that of tensile and SOSWZy*,ymax] is found from the relation=¢/tana. A plot of the
stresses. The initial yield enve_lope deflnl_ng the onset of plasc%%& points ¢,7) is presented in Fig. 19. It appears that under
collapse in terms of Macroscopic stresses Is F’Fese”‘ed-. To des otonic loading along a linear strain path the corresponding
the mechanical response in the crushing regime, we mtroducec?ushing envelope” is a linear function in the shear stress—
crushing envelope alqng with a flow rule. N o normal stress plane:

Honeycomb elasticity as well as the transition from initial col-
lapse to the crushing regintéhat is, softeningare not addressed
from a phenomenological point of view. We refer to the textbook
by Gibson and Ashb§3] for a description of orthotropic elasticity L .
of the statistically homogeneous honeycomb microstructure. URb® mean stress under uniaxial compressimcalled “plateau
der large deformations, however, the elastic moduli evéehr ~Stress) found from a fit to the experimental data iso=
and Doyoyo[14]) and most importantly, the elastic material be-~ 1.0 MPa. Again, we restrict the validity of the yield envelope to
havior changes from transverse-orthotropic to full-anisotropROMpressive stresses only, i.e=<0. Recall that tests at small
elasticity. In other words, coupling effects between elastic she@igxial loading angles developed tensile stresses under large
strains and normal stresses and vice versa come into play S¥@ns and are thus not considered for the evaluation of the
require special attention. At the same time, most engineering &gnpression-dominated crushing behavior. For instance the mean
plications of honeycomb either exploit its orthotropic elastic beshear stressgy=0.53 MPa, is determined from the extrapolation
havior or its crushing behavior, where elastic strains are small @kthe data in Fig. 19, instead of using the results from the tension-
compared to the total strains and thus negligible. The later argiminated 0 deg tests. _ _
ment also partially justifies why the phenomenological description Further analysis of the dat&ig. 19 suggests that the relation-
below does not include the transition from the nucleation env&hip between the direction of the inelastic deformation and the
lope to the crushing envelope. The other argument for omitting'%Catlon on the crushing envelope may be expressed as follows
discussion of this transition phase is the lack of experimental e¥flow rule equivalent
dence. Based on the results from numerical simulations of the de
honeycomb microstructure under multiaxial loadifigohr and — =
Doyoyo [21]) and the honeycomb plasticity presented above, the dy
authors believe that loading path dependency might play a keyNote that for the present experiments along linear strain paths,
role on the shape of post-yield envelopes in this transition regim@e left-hand side corresponds to the tangent of the biaxial loading
a property that could not be studied with the present testirggle, i.e., it represents the direction of the strain resultant in the
method. This concern also applies to the crushing envelope, fuv plane. The right-hand side represents the direction of the
must be tempered since the crushing envelope represents the nmgifesponding stress resultant. According to Bdp), the strain
over a wide range of individual envelopes in the crushing phasgad stress resultants are parallel in the crushing regime.

T _1-o0. (14)

- ag
fC(U,T)=;—+ ?—0

0

(15)

A S

6.1 Initial Yield Envelope. We ignore irreversible deforma- .
tion in the honeycomb microstructure prior to collapse and defir?e Conclusions
the initial yield envelope by the onset of plastic collapse of the A custom-built universal biaxial testing devid® TBD) was
honeycomb microstructure. The corresponding collapse stressascessfully used to perform reliable tests on hexagonal aluminum
are defined by the initial peak stresses of the macroscopic stressaeycomb relative to its tubular direction. Based on the experi-
strain curves. A plot of the data points found from the presentental results, the mechanical response of a honeycomb sandwich
experiments is shown in Fig. 19. It appears that an elliptical yiegpecimen to combined compressive and shear loading was ana-
envelope provides the best description for the onset of plastjzed in depth, both at the microstructural and the macroscopic
collapse: levels. It appeared that deformation-induced folding systems de-
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The Resistance of Clamped
Sandwich Beams to Shock
Loading

N. A. Fleck’

g-mail: naf1@eng.cam.ac.uk A systematic design procedure has been developed for analyzing the blast resistance of
clamped sandwich beams. The structural response of the sandwich beam is split into three
V. S. Deshpande sequential steps: stage | is the one-dimensional fluid-structure interaction problem during
the blast loading event, and results in a uniform velocity of the outer face sheet; during
Engineering Department, stage Il the core crushes and the velocities of the faces and core become equalized by
Cambridge University, momentum sharing; stage Ill is the retardation phase over which the beam is brought to
Trumpington Strest, rest by plastic bending and stretching. The third-stage analytical procedure is used to
Cambridge, CB2 1PZ, UK obtain the dynamic response of a clamped sandwich beam to an imposed impulse. Per-
formance charts for a wide range of sandwich core topologies are constructed for both air
and water blast, with the monolithic beam taken as the reference case. These performance
charts are used to determine the optimal geometry to maximize blast resistance for a
given mass of sandwich beam. For the case of water blast, an order of magnitude im-
provement in blast resistance is achieved by employing sandwich construction, with the
diamond-celled core providing the best blast performance. However, in air blast, sand-
wich construction gives only a moderate gain in blast resistance compared to monolithic
construction.[DOI: 10.1115/1.1629109

1 Introduction modeled the core topologies explicitly but ignored the fluid-
structure interaction; a prescribed impulse was applied to the outer

A major consideration in the design of military vehiclesich ¢ f th dwich b d lied uniform h
as ships and aircraftis their resistance to air and water blast'ac€ Of the sandwich beam and was applied uniformly to the

Early work (at the time of World War ) focused on monolithic monolithic beam. A limited number of FE calculations were per-
plates, and involved measurement of blast resistance by full sciggmed to identify near-optimal sandwich configurations, and the
testing for a limited range of materials and geometries. SimpRlPerior blast resistance of sandwich beams compared to that of
analytical models were also developed, such as the orfgonolithic beams was demonstrated.

dimensional fluid-structure interaction model of Taylaf. Review of the Characteristics of a Water Blast. The main

Over the last decade a number of new core topologies for sang- - .
. . characteristics of a shock wave resulting from an underwater ex-
wich panels have emerged, showing structural advantage ov

r. X S .
monolithic construction for quasi-static loadings. These inclu Josion alre well .estai)llshzd dléel.to a cor;;]blnatlctaréoof dEta”Sd
metallic foams|2], lattice materials of pyramidal and tetrahedra arge-scale experiments and modeling over the pas years. Use-

arrangement;3], woven material[4], and egg-box[5]. The cur- Ul summaries of the main phenomena are provided by Cdle
rent study is an attempt to extend and to synthesize analyti@éld Swisdak8], and are repeated briefly here in order to underpin
models for the dynamic response of clamped beams in ordertf¢ current study.
optimize the blast resistance of clamped sandwich beams. Explicitfhe underwater detonation of a high explosive charge converts
comparisons are made between the performance of competifig solid explosive material into gaseous reaction prod{etsa
core concepts. time scalet, of microseconds The reaction products are at an
The clamped sandwich beams, as sketched in Fig. 1, is repegormous pressuréon the order of GPa and this pressure is
sentative of that used in the design of commercial and militatyansmitted to the surrounding water by the propagation of a
vehicles: For example, the outermost structure on a ship cogpherical shock wave at approximately sonic speed. Consider the
prizes plates welded to an array of stiffeners. While it is apprediesponse of a representative fluid element at a radial distance
ated that the precise dynamic response of plates is different frgpgm the explosion. Upon arrival of the primary shock wave, the
that explored here for beams, the qualitative details will be simiressure rises to a peak valpg almost instantaneously. Subse-
lar, and major simplifications arise from the fact that simple angyently, the pressure decreases at a nearly exponential rate, with a
lytical formulas can be derived for th_e beam. time constantf on the order of milliseconds, and is given by
D o o)~ 4PCUf.The magriuce of he shock wae pak pres-
b . o . . sure and decay constant depend upon the mass and type of explo-
eams of the same mass via three-dimensional finite elefREnt . . . .
simulations. In these FE calculations, Xue and Hutching®n sive material and the distanceAfter the primary shc_)ck wave has
passed, subsequent secondary shocks are experienced, due to the
"5 whom correspondence should be addressed. damped oscillation of the gas bubble which contains the explosive
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY oF  reaction products. However, these secondary shock waves have

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIEDME-  much smaller peak pressures and are usua”y much less damaging
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 19 . ’ . L
2002; final revision, July 10, 2003. Associate Editor: R. M. McMeeking, Discussioﬂﬁ_'an the primary shock to a structure in the vicinity of the explo-

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Dep&ton than the primary shock.

ment of Mechanical and Environmental Engineering University of California—Santa Experimental data(and physical mode]ssupport the use of
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after

final publication of the paper itself in the ASME)URNAL OF APPLIED MECHAN- s!mple power—lavy scaling relations petween th'e nmagsf eXpIO'.
ICS. sive, the separation between explosion and point of observation,
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h core

face sheets
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Fig. 1 Geometry of the sandwich beam

and the resulting shock wave characteristjgg,and 6. For ex-
ample, for an underwater TNT explosion, the peak pressure is
taken from Table 2 of Swisddl8] as

ml/3 1.13
Po= 52.4( T) MPa, 1)

wherem is in kilograms and is in meters. Also, the time constant
0is

1/3\, —0.23
0= 0.084n1’3( T) ms. 2

These relations have been validated for the domaimaind r
such thatp, lies in the range 3—-140 MPa, see Swisd8k for
further details. Similar scaling relations have been obtained for
other high explosives, and the coefficients in the above relations
hold to reasonable accuracy for them also.

Next consider the case of a blast wave in air due to the deto-
nation of a high explosive. Again, a primary shock wave travels at
near sonic speed, with an exponential pressure-time history at any
fixed location from the explosive. The time constant for the pulse
0 is similar in magnitude to that in water, but the peak pressure is
an order of magnitude loweisee Ashby et al[2] for a recent
discussion, building upon the work of Smith and Hetherington

[9D).
L . L Fig. 2 Sketches of the sandwich core topologies; (a) pyrami-
Scope and Motivation of the Study. The main objective of g core, (b) diamond-celled core, (c) corrugated core, (d)

this study is to develop analytical formulas for characterizing th@xagonal-honeycomb core, and (e) sguare-honeycomb core
structural response of a sandwich beam subjected to blast loading

in water or in air. These formulas are of direct practical use for

designing laboratory-scale and industrial-scale blast-resistant

sandwich beams, including the choice of face sheet and core. jy,ciijing strength of the struts to exceed their yield strength, the

First, the relevant mechanical response of candidate core gQyof-plane compressive strength of the pyramidal core also
pologies is reviewed. Second, the dynamic structural response Qf@es linearly withp. A detailed discussion on the mechanical
clamped sandwich beam is analyzed; it is argued that the respopggserties of lattice materials such as pyramidal cores has been
can be separated into three distinct stages. Stage | is the resp n previously by Deshpande and FIg&. For example, the

of the front face sheet to the primary shock wave, including thg, mal compressive strength,y of the pyramidal core with the
effects of fluid-structure interaction. Crushing of the core occutg s making an angle=45° with the face sheets is

in stage Il. And in stage Il the sandwich beam is brought to rest

by plastic bending and stretching. Third, performance charts for a 055 . . 962y

wide range of sandwich core topologies are constructed for both o set by yield, if p>——

air and water blast, with the monolithic beam taken as the refer- Iny _

ence case. These performance charts are used to determine th&y 7 —  set by elastic buckling. otherwise

optimal geometry to maximize blast resistance for a given mass of 9613 ¢ P y 9 ’
sandwich beam. v 3)

. . whereoy and ey are the uniaxial yield strength and strain of the
2 Review of Core Topologies solid material from which the pyramidal core is made. Here we
In recent years a number of micro-architectured materials hakrave assumed that the core struts are pin-jointed to the face sheets
been developed for use as the cores of sandwich beams and parprder to get a conservative estimate of the elastic buckling
els. Here we briefly review the properties of the following candistrength. The in-plane strength of the pyramidal core in the length
date cores for application in blast-resistant construction: pyrangiirection of the sandwich beam is governed by the bending
dal cores, diamond-celled lattice materials, metal foamsirength of the nodes. Consequently, the in-plane strength scales
hexagonal-honeycombs and square-honeycombs. asp>?and at the low relative densities for which these pyramidal
Pyramidal coresas shown schematically in Fig(&, are fab- cores find application, this strength is negligibdg, =0.
ricated from sheet-metal by punching a square pattern and then bypiamond-celled lattice materialeave the geometry shown in
alternately folding the sheet to produce a corrugated pattern. Thig. 2(b), and have recently been proposed as cores of sandwich
core is then bonded to the solid faces by brazing. The pyramide@ams. These lattice materials can be manufactured either by
core has an out-of-plane effective modu(asad longitudinal shear brazing together wire meshdg), or slotting together sheet metal.
modulug which scale linearly with the relative densipyof the ~With the diamond-like cells aligned along the longitudinal axis of
core. Provided the struts are sufficiently stocky for the elasttbe beam as shown in Fig.(t8, these materials provide high
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strengths in both the normal and longitudinal directions of thehis core is 100% efficient in carrying load in both these direc-
beam. Typically diamond-cells have a semi-angte 45° and the tions. It is not clear whether such a core is physically realizable:

core has a normal compressive strength The diamond-celled core with the diamond cells aligned along the
longitudinal axis of the beam or a square-honeycomb come clos-
0.5, set by yield, if F>4\/36Y. est to this “ideal” performance.
Tny ’ a )
oy = 2 3 Analytical Models for the Structural Response of a
T pe, set by elastic buckling, otherwise, Clamped Sandwich Beam to Blast Loading
v (4a) For the sandwich beam, the structural response is split into a
] o o sequence of three stages: stage | is the one-dimensional fluid-
while the longitudinal strength is given by structure interaction problem during the blast event, and results in
o a uniform velocity being imposed on the outer face sheet; stage Il
Al =p. (4p) s the phase of core crush, during which the velocities of the faces
oy and core equalize by momentum transfer; stage lll is the retarda-

phase during which the beam is brought to rest by plastic
ding and stretching. This analysis is used to calculate the trans-
yerse displacemertand longitudinal tensile strain accumulated
f selected sandwich beams as a function of the magnitude of
st loading.

Note that the diamond-celled core has identical strength-densﬁ)kgr]]
relations to the single layered corrugated core shown in K. 2
However, unlike in a corrugated core, the size of the diamon
cells can be varied independently from the sandwich beam ¢
thickness and hence made as small as required to prevent wi

kling of the sandwich face sheets. o 3.1 Order-of-Magnitude Estimate for the Time Scale of
Metal foamsare random cellular solids with a highly imperfectz4ch Stage of the Dynamic Response.The justification for
microstructure. In most cases they are close to isotropic in elasi@jitting the analysis into three distinct stages is the observation
plastic properties. The connectivity of neighboring cell edges {ft the time periods for the three phases differ significantly. The
sufficiently small for the cell walls to bend under all macroscopigyration of the primary shock for a typical blast wave in air or
stress states, Ashby et &2]. Consequently, the modulus scalegyater due to the detonation of an explosive is of the order of 0.1
quadratically with relative densiy, while the macroscopic yield g |n contrast, the period for core crush is approximately 0.4 ms,

strength scales witp*? according to[2], argued as follows. Suppose that a blast wave in water provides an
o o impulse of 16 Nsm™2 to a steel sandwich structure, with a 10
oy T =0.3%2 (5) mm thick face sheet. Then, the front face acquires an initial ve-
Oy Oy locity v, of 127 ms'1. On taking the core to have a thickness of

Hexagonal-honeycomtare extensively used as cores of sandt =100 mm and a densification straép =0.5, the compression
wich beams in the configuration sketched in Figd)2i.e., with Phase lasts foepc/v,=0.39 ms. In contrast, the structural re-
the out-of-plane direction of the honeycomb aligned along tHRPONSe time is on the order of 25 ms: this can be demonstrated by
transverse direction of the beam. Thus, neglecting the elasgnsidering the dynamic response of a stretched rigid-ideally plas-

buckling of the cell walls we take tic string. Consider a string of lengthL2 gripped at each end,
made from a material of density; and uniaxial yield strength
ony oy . Then, the transverse equation of motion for the membrane
=p. (6) state is
Oy
W

On the other hand, in the longitudinal direction of the beam,
hexagonal-honeycomb cores deform by the formation of plastic

hinges at the nodes which results in a negligible strength. Thus, {herew(x,t) is the transverse displacement, the overdot denotes
practical applications it is reasonable to assumge=0 for these gifterentiation with respect to timg andx is the axial coordinate

honeycombs. o from one end of the string. For illustrative purposes, assume the
Square-honeycomtss sketched in Fig.(8) can be manufac- tring is given an initial velocity profile w(t=0)

tured by slotting together sheet metal. With the square cells; sin(mx/2L). Then, the solution of9) is

aligned parallel to the longitudinal axis of the beam as sketched in ° ’

Fig. 2(e), the square-honeycomb core provides high strength in 2w, L pi [ ™ Joiy | . wX

both the normal and longitudinal directions. Neglecting elastic w=— \/U—fysm oL \/?t sins (10)
buckling of the cell walls in the normal direction, the normal and

longitudinal strength of the square-honeycomb are given by ~ The string attains its maximum displacement and comes to rest

PfW*U'fYWZZOy )

after a time
Ony
=p, and, a
o P (&) T=L/ 2 (11)
Oty
Ty —0.5, (7b) Now substitute representative values for the case of a steel ship
oy ’ hull: L=5m, p;=7850 kgm 3, and o;y=300 MPa, givesT

. =25 ms, as used above.
respectively.

All the cores discussed above have their relative advantageg 2 Stage I: One-Dimensional Fluid-Structure Interaction

and disadvantages with regards to properties, ease of manufacfiyiRiel. Consider the simplified but conservative idealisation of
and cost. For the purposes of judging the relative performance phjane wave impinging normally and uniformly upon an infinite
the cores described above we define an “ideal” core. The *ideakandwich plate. For most practical geometries and blast events,
core has optimal strengths in the normal and longitudinal direge time scale of the blast is sufficiently brief for the front face of
tions given by a sandwich panel to behave as a rigid plate of mass per unit area

o o m;. We adopt the one-dimensional analysis of Taylb}, and

oy _ZIV_— g) consider an incoming wave in the fluid of densgy,, traveling

p p. (8 | Wav - T . :

Yy Oy with a constant velocitg,, in the direction of increasing mea-
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sured perpendicular to the sandwich panel. The origin is taken at 1
the front face of the sandwich panel, and the transverse deflection
of the face is written awv(t) in terms of timet. Then, the pres-
sure profile for the incoming wave can be taken as

pi(X,t)=p,e” (=¥ew /?, 12)

upon making the usual assumption of a blast wave of exponential
shape and time constasit(on the order of 0.1 ms, as discussed
above. The magnitude of the peak pressyxgis typically in the 2p0 0.4
range 10—100 MPa, and far exceeds the static collapse pressure
for the sandwich platétypically on the order of 1 MPa

If the front face were rigid and fixed in space, the reflected
wave would read

0.8

0.6

I trans

0.2

°= >

Pra(x,t)=poe” (¥l (13)

corresponding to perfect reflection of the wave, traveling in the P

—x direction. But the front face sheet is not fixed: it accelerates as . ) )

a rigid body with a mass per unit arem;, and moves with a Fig- 3 The ratio of the impulse transmitted to the struc-

velocity w(t). Consequently, the fluid elements adjacent to th&f® fwans . and the impulse transmitted to a fixed rigid

front face possess the common veloaityt), and a rarefaction structure 2 p,0, as a function of the fluid-structure interaction
. ’ t

wavep,,, of magnitude parameter

0.5 1 15 2 25 3 35

X
Pra(X,t) = _pWCWW( t+ E (14)

) ) v impulse decreases substantially with increasingt is instructive
is radiated from the front face. Thus, the net water press(xet)  to substitute some typical values for air and water blast into rela-
due to the incoming and reflected waves is tions (19) and (20b) in order to assess the knock down in trans-
_ _ — (t=x/Cy) 10 n— (t+x/cy) 10 mitted impulse and the magnitude of the cavitation time in rela-
PXD=PiHPrit Pro=Pole e ] tion to the blast time constan® due to the fluid-structure
interaction. For the case of an air blast, we takg,
: (15) =1.24 kgm3, ¢,=330 ms?, §=0.1 ms, andm,=78 kgnr 2
_ _ for a 10 mm thick steel plate. Hence, we find thiat0.052,
The front face of the sandwich panit x=0) is accelerated by 1 /¢=3.1 andl /| ~0.85. In contrast, a water blast, we take
the net pressure acting on it, giving the governing ordinary diffe[,-wzlooo kgn3, ¢, =1400 ms?, §=0.1 ms, m;=78 kgn %
ential equation for face motion as this implies the valuegy=1.79, 7./6=0.74 andl s/l =0.267.
M+ pyCyW=2p,e " (16) We conclud_e that a significgnt re(_juction in transferred impulse
can be achieved by employing a light face sheet for the case of
Upon imposing the initial conditions(0)=w(0)=0, and defin- water blast, while for air blast the large jump in acoustic imped-
ing the nondimensional measuye=p,c,0/m;, the solution of ance between air and the solid face sheet implies that all practical

X
t+—
Cu

— PuCwW

(16) is designs of solid face sheet behave essentially as a fixed, rigid face
2p, 62 with full transmission of the blast impulse. We anticipate that
w(t)= 0 [(p—1)+e Wi ye V0], (17) sandwich panels with light faces can be designed to ensure the
mi(gp—1) ¢ reduced transmission of impulse from an incoming water blast
and the pressure distribution follows immediately {418). In par- Wave. ) ) )
ticular, the pressure on the front face is In summary, the first phase of the analysis comprises the accel-

eration of the front face to a velocity, by the incoming(and
o —to_ P reflected primary shock wave. The core and back face of the
P(tx=0)=2pee W 1[e € 1. (18) sandwich beam remain stationary during this initial stage. It is
o . . instructive to obtain order of magnitude estimates for the initial

For the case of a liquid containing dissolved gases, the pressygg, ity of the front face, and its deflection at tite 7, . For an

l;;)(atld;n—go;)i éhihfé?gé;?jceiirﬁigsﬁi ig?/itgieorl]iqtiur% Cag’lijtg;?i?uv"hﬁﬂpulse of magnitude FoNsm 2 in air, and 18 Nsm™2 in water,
LA )T B =) . . L " the acquired velocity of the front face is approximately 13 s
tion of this condition into(18) provides the simple relation for the air blast, and 34 m¢ for the water blaststeel face sheet,

2po¢

Te 1 of thickness 10mm Relation(17) reveals that the lateral deflec-
e ﬂln v, (19)  tion of the front face is 2.5 mm for the air blast and 1.83 mm for
the water blast. It is expected that sandwich beams for ship appli-
and the impulse conveyed to the face follows fr@hi) as cation will be of core thickness of order 0.1-1.0 m, and so the
_ degree of core compression during the initial phase of blast load-
Itrans_ §| (203-) ing i P
g is negligible.
where Taylor[1] has modeled the influence of structural support to the
=y -1 2m) dynamic response of the face sheet by adding the kemrto (16),
’ corresponding to a uniformly distributed restraining force of mag-
and| is the maximum achievable impulse given by nitude kw giving
sz 2p,e~Vidt=2p,0. 1) MW + py,CuW + kw=2p,e~V?. (22)
0

The physical interpretation is thiatdenotes the structural stiffness
This maximum impulse is only realized for the case of a statiomtue to an array of supports between the face sheet and the under-
ary rigid front face. The ratid, /! is plotted as a function of the lying, motionless structure. By solvin@2), and considering rep-
fluid-structure interaction parameterin Fig. 3; the transmitted resentative values fok for the case of a steel plate on a ship
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superstructure, Taylor demonstrated that the stiffness term can (a) X()
neglected with little attendant loss of accuracy. The main obje &

tive of the current study is to compare the relative performance
various sandwich panel configurations, and so the simplifie a8 o
analysis is adequate for our purposes. : b
Cpl
3.3 Stage Il: One-Dimensional Model of Core Compres- ¢

sion Phase. In the second phase of motion it is envisaged th:
the core is crushed by the advancing outer face sheet, and cor(b)
quently the outer face sheet is decelerated by the core while :
core and the rear face of the sandwich beam are accelerated.
simplicity, we consider a one-dimensional slice through the thicl
ness of the sandwich beam and neglect the reduction in mom 25
tum due to the impulse provided by the supports. This appro
mation is motivated by noting that the time period of this phase
much smaller than the overall structural response time of tl
structure. Subsequent retardation of the sandwich beam is due
plastic bending and stretching in Stage Il of the motion. Detaile 7 5
finite element calculations carried out recently by Qiu ef &0] ¢
support this assertion. The core is treated as a rigid, ideally plas
crushable solid with a nominal crush strength, up to a nominal 1
densification strairp . After densification has been achieved, it is
assumed that the core is rigid.

Overall considerations of energy and momentum conservati
can be used to determine the final value of core compressive str
e.(<ep) and the final common velocity; of faces and core at 0
the end of the core crush stage. The quantijeanduv; suffice to
proceed with the third stage of analysis to calculate the bee I
deflection. However, if additional information on the core crush
phase is to be obtained, such as the time for core ciysha Fig. 4 (a) Sketch of the propagation of a one-dimensional
one-dimensional plastic shock wave analysis is required. First, wigck in the sandwich core,  (b) the nondimensional core com-
present the immediate results fer andv¢, and then we outline pression time 7. as a function of the nondimensional impulse ]
the shock wave analysis in order to obtdip. transmitted to the structure

Momentum conservation during core crush dictates that

T T

plastic shock wave model

core inertia neglected -

6 8 10

(2mf+pCC)Uf:meO, (23)

and so a direct relation exists between the common velocity of thePlastic Shock-Wave AnalysisThe above analysis assumes
sandwich beany after core crush and the initial velocity of thethat the core compresses uniformly through its thickness at con-
outer facep,. The ratio of the energy lodt,,, in this phase to Stant stress. In reality, the core can compress nonuniformly due to

the initial kinetic energy of the outer face sheet is then given buckling of strut elements within the core and due to inertial ef-
ects. Here, we consider the case of a core which contains a suf-

Uet 1+p ficiently large number of microstructural unifthe cells of a metal
mfuﬁlzz m (24) foam, or the units of a diamond-celled cpifer i_t to .be_ repre-
sented by a porous solid. However, the role of inertia is included,
where p=p.c/m;. This loss in energy is dissipated by plasticand a plastic shock wave analysis is performed in order to deduce
dissipation in compressing the core and thus we equate the spatial and temporal evolution of strain within the core.
Consider a sandwich structure, with face sheets of mass per unit
Ulost= 0nvecC, (29) aream;, and a core of initial thickness and relative density.. .

wheree, is the average compressive strain in the core. Combinidd front face sheet has an initial velocity, while the core and
the two above relation, the core compression stegiis given by iNner face sheet are initially at rest. As assumed above, we con-
sider a one-dimensional problem as sketched in K. with the

ep prl., core treated as a rigid, ideally plastic solid with a nominal crush
Y m , (26) strengtho,v up to a nominal densification straiy, ; at densifi-

R cation the core locks up and becomes rigid. After impact of the
in terms of the dimensionless parametet|,,./\MiCo,vep. front face sheet upon the core, a plastic shock wave moves
However, ifU,,q is too high such that, as given by(26) exceeds through the core at a velocity, . Suppose that the shock wave
the densification strairp, then €. is set to the valuep and has advanced by a distancé after a timet has elapsed, as
additional dissipation mechanisms must occur for energy conseketched in Fig. @&). Upstream of the shock wave, the unde-
vation. The above analysis neglects any such additional meck@med core and rear face of sandwich beam have a velogity
nisms. FE calculations by Xue and Hutching6h and Qiu et al. whilst downstream of the shock wave the core has compacted to
[10] reveal that the additional mechanism are tensile stretchingtbe densification straire, and shares the velocityy with the
the outer face near the supports together with additional crushifignt face. The propagation behavior of the shock wave can be
of the core under sharply increasing stress. determined by numerical integration as follows.

Now a word of warning. The Stage Il analysis neglects the Conservation of momentum dictates
impulse provided by the support reactions during the core com-
pression phase. This assumption breaks down for stubby beams

€c

subjected to large impulses; the quality of the approximation is [MiFpe(C=X) Jout[me+peX]ug=mivo, @7
analyzed in detail by Qiu et aJ10] via a set of dynamic finite
element calculations. while energy conservation states
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, 1 , 1 5 from 2 tov2. Thus, it is predicted that the plastic shock wave will
7 Mivo=5[Mi+pe(c=X)Juy+ S[Mi+pcXJog+ onvepX, arrest before it traverses the core provide less tharv2 for all
(28) ratios of core to face sheet mass. .
The dependence of.=T.v,/epC on | is shown in Fig. 4b)
for selected values op. It is clear from the figure thal. in-
Cpl€p=Ug—Uy- (29) creases from zero to a peak valuel @acreases from zero to the

gnsition valuel, . At higher values ofl, T, decreases: at very

Now the compressive stress on the upstream face of the sh f | i hed a fini hich |
wave is related directly to the mass and acceleration of upstregarﬁ]e values of, T. approached a finite asymptote which equals
unity for the casgp=0. It is assumed that the core becomes rigid

material, givin . - e
gving after it has densified, and the core and face sheet velocities instan-

and mass conservation across the shock wave provides

oy=[Mmi+p(c—=X)]oy, (30) taneously jump in value to; at T=T,. i i
and a similar relation holds for the compressive stress on theSimple analytical expressions for the dependencé.aipon|
downstream face of the shock wave, can be obtained in the limiting case of a negligible core mass,
) —0. Consider first the case where the impulse is sufficiently small
og=—[Mi+pX]og. (31) for the core to compress by a straip less than the densification

value ep . Then, the core provides a constant compression stress

Time differentiation of(27) and the elimination of i ,0a) o,y upon the front and back face sheets, so that the front face has

from the resulting expression vi80) and (31) leads to the well- locit
known statement of momentum conservation across the shdfR velocity

wave, ooyt
V4=V~ : (37)
(T Ud:pccpl(vu_vd)- (32) e mg
As the shock wave progresses through the core it slows dowwhile the rear face has the velocity
and, for a sufficiently low initial value of front face velocity, , t
the shock wave arrests at a travgl less than the core thickness vy= Iny . (38)
c. Upon noting thatX=cy, the crush timeT, is calculated via my
(29 to give The core compression tinfk, is obtained by equatingy andv,,,
Xe dX X €p to obtain
Tc=f —=f dx. (33) -
o Cpl 0 Vd— Uu R E
. . Te=75. (39)
Now (vg—uv,) can be expressed as a function)olia (27) and 2

(28), and (33) thereby integrated numerically in order to obtain  continuing with the choicg—0, now address the case where
the core crush timeT.. The integral reads in nondlmensmnalthe impulse exceeds the transition vaiye 2, so that the core

form, densifies before the front and rear-face sheet velocities have
I x 1 — equalized tw,/2, as demanded by momentum conservation. The
Te= Py =J' F— dX, (34) core compression time is set by the time for the face sheets to

D 0 d u

undergo a relative approach efc. Upon noting that the front

where X=X/c, X,=X./c=¢,/ep, as specified by(26), vy [ace sheet displaces by

=vq4/v, andvy=v,/v,. In the above relationwy—v, depends Ty

upon X according to Sq= Vot — 2—t2, (40)
Mg
=)’ 1+ﬁ(2—f)+ﬁ2(1—f) while the back face sheet displaces by
Ug—Uy) = — —
1+p(1—X)14(1+p o
[1+p(1—-X)]2(1+pX) T 1)
v 2my
2(2+p)pX N . .
- — —. (35) the core compression timE, is determined by the condition
[1+p(1=X)](1+pX)I?
— A A Iny 2
For the caseX=X/c<1, T, is calculated as a function df by Sg—Su=UVolc™ WTCZGDC- (42)

evaluating(34), with (vq—v,) expressed by35), and the upper

limit of integration X, = e./ep expressed in terms df via (26).  With solution

However, at sufficiently high values of impulde the plastic - i

shock wave traverses the thickness of the aomeithout arrest. 'T'CE Vo _ _[f_ \ /|A2_4]. (43)
The period of core compression is again specified 3, with €pC 2

(vq—v,) expressed by35), and the upper limit of integration .
Yczl.l At the transition valuét, the shock wave arrests at the 3.4 Stage lll: Dynamic Structural Response of Clamped

. . S : Sandwich Beam. At the end of stage Il the core and face sheets
same Instant that_ It traverses the core thickngss; obtained by have a uniform velocity; as dictated by23). The final stage of
equatinge. to ep in (26), to give

sandwich response comprises the dissipation of the kinetic energy
2(p+2) acquired by the beam during stages | and Il by a combination of

1 (36) beam bending and longitudinal stretching. The problem under
) P consideration is a classical one: what is the dynamic response of a
It is noted in passing thdf, is only mildly sensitive to the mag- clamped beam of lengthl2 made from a rigid ideally-plastic
nitude of the mass ratip: asp is increased from zertnegligible material with mass per unit length subjected to an initial uni-
core massto infinity (negligible face sheet masd decreases form transverse velocity ;? This problem has been investigated
by a number of researchers. In particular, Symmdrds devel-

INote that in such cases the above analysis conserves momentum but doesOrRﬁd analytical solutions based on a'small displacement ana!ySiS
account for the additional dissipation mechanisms required to conserve energy. While Joneq12] developed an approximate method for large dis-

T2_
lf=
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Fig. 5 Analysis of stage Il of the blast response. (a) Velocity profile in phase I,  (b) a free-body
diagram of the half-beam in phase |, with the deflected shape sketched approximately, (c)
velocity profile in phase Il, and (d) a free-body diagram of the half-beam in phase Il, with the
deflected shape sketched approximately. The accelerations of the beam are shown in (d).

placements using an energy balance method. These methods ame the dynamic analysis we shall assume that displacements
summarized in Jond4.3]. Here we present an approximate solueccur only in a direction transverse to the original axis of the
tion that is valid in both the small and large displacement regimbeam and thus stretching is a result of only transverse displace-
it reduces to the exact small displacement solution of Symmondgents. Moderate transverse deflections are considered, such that
[11] for small v¢ and is nearly equal to the approximate larg¢he deflectionw at the mid-span of the beam is assumed to be
deflection solution of Jond4 3] for largev; . small compared to the beam length 2nd the longitudinal force
Active plastic straining in the beam is by a combination oN=N, can be assumed to be constant along the beam. The motion
plastic bending and longitudinal stretching with shear yieldingf the beam can be separated into two phases as in the small
neglected: An evaluation of the magnitude of the transient shedisplacement analysis of Symmoniddl]. In phase |, the central
force within the face sheet in the dynamic clamped beam calgoertion of the beam translates at the initial veloaitywhile seg-
lation of Jone$13] reveals that shear yielding is expected only foments of length at each end rotate about the supports. The bend-
unrealistic blast pressures as discussed above. We assume ititatnoment is taken to vary from- M, at the outer stationary
yield of an beam element is described by the resultant longitudinahstic hinges at the supports toM, at ends of the segments of
force N and the bending mome. The shape of the yield sur- length ¢ with the bending moment constant in the central flat
face in (N,M) space for a sandwich beam depends on the shapertion. Thus, time increments in curvature occur only at the ends
of the cross section and the relative strength and thickness of tifethe rotating segments while axial straining is distributed over
faces and the core. A yield locus described by the length of the rotating segments. A free-body diagram for half
M| IN| of the clamped beam is shown _in Figbs conservatic_m of the
=, (44) moment of momentum about a fixed end after a tinggves
Mo No L L—¢& 1
whereN, and M, are the plastic values of the longitudinal force (mLoy) 5= m(L— §)vf< &+ T) +2Mt+ ENvat2
and bending moment, respectively, is highly accurate for a sand-
wich beam with thin, strong faces and a thick, weak core. It be- £ my x®
comes less accurate as the beam section approached the mono- f
lithic limit. It is difficult to obtain a simple closed-form analytical o ¢

solution for the dynamic beam response with this choice of yie|ghere x is the axial coordinate from one end of the beam. as

surface. Here, we approximate this yield locus to be a circur@poun in Fig. §b). This equation giveg as a function of time
scribing square such that

IN|=N, (450) .

IM[=M,, (4%0) . : - :
Phase | continues until the traveling hinges at the inner ends of

with yield achieved when one or both of these relations are satife segments of lengificoalesce at the midspan, i.é=L. Thus,
fied. We could equally well approximate the yield locus to be afiom (48), phase | ends at a tinig,

inscribing square such that

dx, 47)

3t(0 Nt +4M,)

mu ¢ (48)

M mL2?N
IN|=0.5N, (462) Ty=—2 +— % 2|, (49)
Nous 3Mm2
[M]=0.5M,, (460) : : o
) ] ) ) o and the displacement of the mid-span at this time is given by
with again at yield one or both of these relations satisfied. Jones
[13] has explored the choice of circumscribing and inscribing M, mL20§N,
yield surfaces for a monolithic beam and shown that the resulting wi=oT =gt VAT 3z 2 (50)
o o

solutions bound the exact response. We proceed to develop the
analysis for the circumscribing yield locus: the corresponding for- In phase Il of the motion, stationary plastic hinges exist at the
mulas for the inscribed locus may be obtained by replabindpy midspan and at the ends of the beam, with the moment varying
0.5M, andN, by 0.5\, . between— M, at the beam end te- M, at the midspan. The
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velocity profile is triangular, as sketched in Figch The equation where(l is the blast impulse transmitted to the structure by the
of motion of the half-beam in phase Il follows from the free-bodyluid. Consequently, the response tiffieas given by(53), can be
diagram sketched in Fig.(8) as rewritten in the nondimensional form as

WL mL?
2Mo+Now=— - mxdx=— —v, (61 = {Pas _1
3a1a2
— (0%
A —————|,
3a1a2+4|2§2a3

2h+_)

0 3

- apC
2

where x is the axial coordinate from one end of the beam as

shown in Fig. %d). With initial conditions w(T;)=w; and T(2h+p)
w(T,)=v;, this differential equation admits a solution of the + A—tan’l
form 3¢(2h+ o clt)

2M, o (60)
w(t)——sw[w(thl)]Jr( +wy|cod w(t—T, )]fN—, where
523 _
where (522) a,=¢83(1+2h)2—1+ocie](1+2h)c(p+2h), (61a)
A ZF] 2_ A
w:i SN(,. (52 az:c[(1+ A) 1+0'|WC], and (65)
LV m 2h+ocle

The maximum deflectiomw of the midspan of the beam occurs at . -
a timeT whenw(T)=0. Upon substituting this termination con- az=t(1+2h). (61c)

dition in the velocity equation, as given by the time derivative of The maximum defectiof64) of the inner and outer faces at the

(52a), the response tim& is obtained as midspan can be written nondimensionally as
1 Nov =
= B | B S _ W a [ 8122«

T=Tuttan (2Mo+W3No) |’ 53) Efzf 1+ Salazs_l ’ (622)
and the corresponding maximum deflection of the midspan of theOI
beam is

v [2M, 2 2Mm, Wo=W+ €cC, (62b)
w= ;Jf ~ twy| - N (54)  respectively. It is emphasized that the deflection of the inner face
(o] o

of the sandwich beam is due to only stage Ill of the deformation
The deflected shape of the beam can be obtained using the pratstory, while the deflection of the outer face is the sum of the
dure detailed on p. 81 of Jongk3] but the derivation and result deflections in stage 11l and the deflection due to core compression
are omitted here as they are not central to the present discussianstage |I.

We specialize this analysis to the case of sandwich beams. Rett is difficult to give a precise failure criterion for the beam as it
call that we are considering clamped sandwich beams of shan & anticipated that the blast impulse for incipient failure is sensi-
with identical face sheets of thicknelssand a core of thickness  tive to the details of the built-in end conditions of the clamped
as shown in Fig. 1. The face sheets are made from a rigid idealigams. Here, we state a failure criterion based on an estimate of
plastic material of yield strengthr¢y and densityp;, while the the tensile strain in the face sheets due to stretching of the beam
core of densityp, has a normal compressive strength, and a and neglect the tensile strains due to bending at the plastic hinges.
longitudinal strengthoy. The plastic bending moment of theThe tensile straire, in the face sheets due to stretching is ap-

sandwich beam with the compressed core is given by proximately equal to
(1—€)C? 1/w)\?
MOZUIYTC+0'th[(1_€c)C+h]; (55) szz(t) (63)
while the plastic membrane ford¢, is given by By setting this straire,,, to equal the tensile ductility; of the face
_ sheet material, an expression is obtained for the maximum nondi-
NO—ZU'fyh+G'|yC. (56) —

mensional impulsé. that the sandwich beam can sustain without
For simplicity we assume that the plastic membrane fddge tensile failure of the face sheets; substitution(68) into (62a),

due to the core is unaffected by the degree of core compressi@ith the choicee,,= ¢;, gives

while this assumption is thought to be reasonable for all the cores

considered, it requires experimental verification. We now intro- - \/3a1a2 (2\/2_6f )2
duce the nondimensional geometric variables of the sandwich le== +1| —1]. (64)
beam 4 8as as

c h " The above analysis, compris_,ing stages |, Il, and I for t_he re-

T= -, h= —, &=c(l-¢,), and h= , (57) Sponse of a clamped sandwich beam to blast loading, gives the

L c 1-€ deflectionw, response timd, the core compressiog, and the
and the nondimensional core properties maximum tensile strai&,, in the sandwich beam in terms of

_ pe  _ o _ ony i. the loading parameters as specified by the blast implulse

= o=_— and o,= . (58) and the fluid-structure interaction parameter
P1 fY R i. the beam geometrg andh, and

The nondimensional structural response timand blast impulse iii. the core properties as given by the core relative density
1 are its longitudinal tensile strengtfy, , compressive strengih,

and its densification straig .

T- E AL I = ICVanenh (59) We proceed to illustrate graphically the functional dependence

pt LVptory ¢ of w, T, €., ande,, on the blast impulsé¢. Consider a represen-
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(a) 1 T T T T T T In a typical design scenario, the solid material and length of the
structural element are dictated by design constraints such as cor-
rosion resistance and bulkhead spacing, thus leaving the sandwich
panel geometry, viz. the face sheet and core thickness, and core
relative density and topology, as the free design variables. Two
design problems will be addressed:

1. For a given material combination, beam length and blast
impulse, what is the relation between sandwich geometry
and the inner face sheet deflection?

2. For a given material combination, beam length and allow-
able inner face sheet deflection, what is the relation between
the required sandwich geometry and the level of blast im-

=
&

pulse?
0 4.1 Monolithic Beams. As a reference case we first present
(] 10 20 30 40 50 60 70 the response of a monolithic beam subjected to a water blast.
1037 Consider a monolithic beam of thicknelsand length 2 made

from a rigid-ideally plastic solid material of densipy and yield
strengtho;y subjected to a blast impulde

b T T T T T T . . . . e
() 06 We define a fluid-structure interaction parameger
0.5 F iniaiitietialy St — h pWCW0
! = _—s——
A ket (65)
0.4} / e .
/ which is closely related to the Taylpt] fluid-structure interaction
,’I | parametegy but written in terms of the specified beam length. The
€, €m 031 / impulse |45 transmitted to the beam is given Hgob) for a
’ specified value ofy and a known beam geomethyL.
0.2t /’ m 7 First, we specialize the analysis of Section 3.4 to the case of a
, monolithic beam with plastic momeri¥l,=Nyh/4, where N,
01k / =hoyy is the plastic membrane force. The nondimensional maxi-
) ot mum deflection of the midspan of the bears w/L and normal-
- /',. . . ized structural response timeE=T/L p; /o follow from (54)
) 10 20 30 4 50 60 70 and(53), respectively, as
103 —
B _h 81272 (L\*
Fig. 6 Response of a clamped sandwich beam  (£=0.1,h W=50 t— | 1 and (66)

=0.1) with a pyramidal core (p=0.1,€,=0.002,€,=0.5) for an

assumed =1.78; (a) the normalized response time T and de- 5 7
flection w and (b) core compression €., and tensile strain in 1 /(h 4_2 5 L
beam €, , as a function of the normalized blast impulse i Il [ 1+ g' 4 E -1

?
21¢
tative sandwich beam wit=h=0.1 and comprising a pyramidal 1 214(L/h)?
core of relative density=0.1 made from the same solid material + 7tan el (660)
as the face sheetwith e,=0.2%). As specified in Section 2, the 3 V3+41272(L/h)*

core yields rather than elastically buckles, and the normal and _
longitudinal strengths of this pyramidal core arg=0.05 and where {l is the impulse transmitted into the structure. Rdr
o,=0, respectively. The densification strain of the core is taken &sl, the above relations reduce to

ep=0.5. To complete the specification, we assume a fluid-

structure interaction parametgr=1.79 which is representative of _ 22— L 8

an underwater blast with a time constai® 0.1 ms and 10 mm - §' ¢ h (67)
thick steel faces as discussed in Section 3.1. The normalized de-

flection w of the inner face of the sandwich beam and response o L\2

time T are plotted in Fig. @) as a function of the normalized =1¢ F) , (68)

blast impulse while the compressiep and tensile stretcl,, are

plotted in Fig. &b). For 1<0.03, the compressive strai in-  hich are identical to the small deflection predictions of Sym-
duced in the core in Stage |l is less thap and w increases monds[11].

approximately quadratically with. At higher impulses the core  \yjith the tensile strain in the beam given (88), the maximum

compression is fixed at the densification lineg andw scales 1561 sustained by a monolithic beam made from material of
approximately linearly withi. On the other hand, the structuraliensile ductilitye; is

response time initially increases linearly with but at high im-

pulses the beam behaves as a stretched plastic string @ad _ 1 [3/h\? L 2
almost independent of the magnitudelof ICZZ g(f) [ 2+2¢¢ ﬁ)+1) -1 (69)
4 Performance Charts for Water Blast Resistance A representative design chart is now constructed for a monolithic

The analysis detailed above is now used to investigate the reteeam subjected to a water blast. Consider a steel beam of length
tive response of monolithic and sandwich beams to blast loadig). = 10 m subjected to a blast with a decay tife 0.12 ms. The
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) ) o ) - Fig. 8 Design chart for a sandwich beam, with a pyramidal
Fig. 7 Design chart for a monolithic beam of tensile ductility core (p=0.1,e,=0.002,e,=0.5), subjected to a water blast. The
€,=0.2, subjected to a water blast with  #=5X10"°. Contours  nondimensional impulse is /=102, and the fluid-structure in-
of the midspan displacement  w are given as solid lines and teraction parameter is taken as  =5X10"2. The regime of ten-
contours of dimensionless mass M are shown as dotted lines. sile failure is shown for an assumed tensile ductility of face

sheets of €;=0.2. Contours of w and €. are included.

fluid-structure interaction parametgrthen takes the valug=5  (associated with shorter spand,,2and with longer values of
%103, Contours of nondimensional deflectionare plotted in the decay constart), tensile failure is less likely. Thus, tensile
Fig. 7 as a function of the normalized blast impulsand beam failure is unlikely to occur for sandwich beams providgdex-

geometryh/L, for y=5x10 3. Note that the contours of the C€€ds approximately 0.02. _
have been truncated at high impulses due to tensile tearing ad @ inverse design problem of the relation between the pyra-

dictated by(69), with the choicee;=0.2. Contours of nondimen- Midal core p=0.1,€/=0.002,¢,=0.5) sandwich beam geom-

sional mas$v = M/(L2p;) = 2h/L, whereM is the mass per unit etry and the blast impulse for a specified deflection0.1 and for

_ -3 i in Ei ; ;
width of the beam, have also been added to the figure. As e%_—Sx 10 ° is addressed in Fig. 10. Tensile failure of the steel

pected, the beam deflection increases increasing with blast i ces @ffo'z) IS Inactive for the ch0|cq=0.1. For th_e purposes
pulse, for a beam of given mass. of selecting sandwich beam geometries that maximise the blast

impulse at a given mass subject to the constraint of a maximum
4.2 Sandwich Beams. The blast response of clamped sandallowable inner face deflectiow, contours of non-dimensional

wich beams, comprising solid faces and the five types of corasassM have been added to Fig. 10, where

discussed in Section 2, will be analyzed in this section. We restrict

attention to cores made from the same solid material as the solid

face sheets in order to reduce the number of independent nondi-

mensional groups by one. With the sandwich beam length ar- 10°

material combination specified, the design variables in the prol 0 '
lem are the nondimensional core thicknessc/L and face sheet
thicknessh=h/c. o
Figure 8 shows a design chart with asxeandh for a clamped Tensile
sandwich beam with a pyramidal corp=0.1, e,=0.002) and 10k failure ) i
subjected to a normalized blast impul$e=1_0’2. The fluid- -—//

structure interaction parameter is again takegrass x 10~ 3; this

is representative for steel sandwich beams of lendtl20 m B
subject to a water blast with a decay const@nt0.12 ms. Further,
the densification straiap of the core is assumed to be 0.5 and the 102k i

tensile ductility of the solid steel is taken ag=0.2. Contours of
nondimensional maximum deflection of the mid-span of the inne
face of the beam and contours of the compressive stgaim the
core have been added to the chart: betland €. increase with

decreasing and beam failure by tensile tearing of the face sheel 107 ; .
is evident at the top left-hand corner of the chart. 10° 1072 107!
The effect of the fluid-structure interaction paramefeupon _
the likelihood of tensile failure of the above sandwich beam is ¢
shown in Fig. 9. The figure shows the regime of tensile failure (?ifig. 9 The effect of 4 upon the magnitude of the tensile failure

the face sheets on a_desig_n chart with ax@h). Apart from the egime within the design chart, for face sheets of ductility €
choice ofy, the nondimensional parameters are the same as thesg2. The sandwich beam has a pyramidal core  (p=0.1,e,
used to construct Fig. §=0.1 andep,=0.5 for the pyramidal =0.002,e,=0.5) and the nondimensional impulse is taken as

core,e;=0.2 for the faces anti= 10~2. With increasing values of /=1072.
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Fig. 11 A comparison of the maximum blast impulse sus-
Fig. 10 Design chart for a sandwich beam, with a pyramidal tained by monolithic beams and by optimal designs of sand-
core (E=0'1!€Y=0'002!€D=0'5)r subjected to a water blast. The wich beams, subjected to the Const@lnts w=0.1 and h/L
beam deflectionis w=0.1 and the fluid-structure interaction pa- =10"2. Results are presented for ¥=5%10"2 and 0.02. The
rameter is taken as ,/7:5)(10—3_ Contours of / and M are dis- core relative density is p=0.1 and densification strain is
played. The dotted lines trace the paths of selected values of €p=0.5.
hlL.
_ M _
M:?:2(2h0+ﬁ, (70)
Pt

M=4 E +2cp. (71)
and M is the mass per unit width of the sandwich beam. The L
figure reveals that geometries that maximize the blast implulse
for a given mas$! haveh— 0 at almost constam, implying that . L o L
h/L—0. The physical interpretation is as follows. With decreasin§ne above constraint on the minimuniL implies a minimum
face sheet thicknes®r face sheet masshe blast impulse trans- value forM of 4h/L. Thus, for the constrairit/L=10"? M has
mitted to the structure reduces: The Taylor analysis givgs the minimum value of 0.04 as evident in Fig. 11. Similarly, for a
—0 ash—0. This limit is practically unrealistic as a minimum monolithic beam of thickness, M is given byM =2h/L and so
face sheet thickness is required for other reasons, for exampleatgonstraint on the minimum value bfL gives directly a mini-
withstand wave loading, quasi-static indentation by foreign olmum acceptable masdd. With increasing values of thé, the
jects such as rocks and other vessels and fragment capture iiiaation of the blast impulse transmitted into the structure de-
blast event. Consequently, we add the additional constraint ofceeases and thus all the beams sustain higher blast. However, the
minimum normalized face sheet thicknds4. into the analysis. relative performance of the various beam configurations remains
Contours ofh/L for two selected values df/L have been added unchanged.
to Fig. 10. These lines represent limits on acceptable sandwichThe effect of the constraint on/L on the performance of the
beam designs, with designs lying above these lines satisfying #igove sandwich beams is illustrated in Fig. 12 for the chgice
constraint onh/L: designs that maximize blast impulse for a=5x10"3. As the allowable minimum value df/L decreases
given mass then lie along the lines of constafit. from 1072 to 103, the blast impulses sustained by the sandwich
The maximum blast impulse sustained by the sandwich beafsams increase. Further, the rankings of the cores change slightly:
with the five different topologies of the coréut p=0.1, €y  while the diamond-celled core still performs the best followed by
=0.002 andep=0.5 in all casep subject to the constraint¥L  the square-honeycomb core, the metal foam core is now seen to
>10"2 and the inner face deflection=<0.1 are plotted in Fig. 11 out perform the pyramidal and hexagonal-honeycomb cores at
as a function of the nondimensional mass for the choiceyy higher masses. This can be rationalized as follows. Upon impos-
=5xX10"3. For comparison purposes, the blast impulse sustainiwdy the constrainh/L=10"3, a large fraction of the mass of the
by a monolithic beam subjected to the same constraints is alandwich beam is in the core. Recall that the pyramidal and
included in Fig. 11. It is evident that sandwich beams all perforimexagonal-honeycomb cores have no longitudinal strength while
considerably better than the monolithic beam. This is mainly dulke metal foam core gives some additional longitudinal stretching
to the fact that the sandwich beams have a thin outer face shesistance to the sandwich beam, and this results in its superior
which results in a small impulse transmitted into the structuggerformance.
whereas the relatively thick beams in monolithic design absorb aSo far we have determined the optimal designs of sandwich
larger fraction of the blast impulse. A comparison of the variouseams for a midspan deflection @f<0.1. But how does the
sandwich cores shows that sandwich beams with a metal foam aethtive performance depend upon the allowable valuedfThe
pyramidal core almost attain the performance of the hexagongkrformance of the sandwich beams with constraliits=10"2
honeycomb core. However, the diamond-celled and squaghd y=5x10"2 is illustrated in Fig. 13 forw=0.1 andw
honeycomb core beams, which have high strength in both tk&) 4. As expected, the beams can sustain higher impulses when
through-thickness and longitudinal directions, out perform th@e constraint ow is relaxed tow=0.4. However, the rankings
other sandwich beams. The performance of the diamond-cel@qiange for the two levels of considered in Fig. 13. With the
core approaches that of the “ideal” sandwich core. It is noted thafgher allowable deflections, the longitudinal stretching of the
M has minimum achievable values. This is explained as followsore becomes increasingly important and the metal foam core out
Sinceh/L=hc, the expressioii70) for M can be rewritten as  performs the pyramidal or hexagonal-honeycomb cores. The
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Fig. 12 A comparison of the maximum blast impulse sus- (b) 25 r T T T T
tained by monolithic beams and by optimal designs of sand-
wich beams, subjected to the constraint w=<0.1 with =5 | =7=7" L
X 1073, Results are presented for constraints h/L=10"2 and 20F 7777 // E
1073, The core relative density is p=0.1, €,=0.002 and densi- e
fication strainis e€,=05. -
L4 ° »~
15F L, L E
. . : : 103 T ax s
diamond-celled core has a high compressive and an ideal longit -~
dinal strength, and has a blast performance which is nearly indi 10- - i
tinguishable from that of the “ideal” core under the constraint
w=<0.4. ]
In the above analysis the relative density of the core has bes ST
taken to bep=0.1, and the yield strain of the core material taken
to be representative of that for structural steelss0.002. Con- 0 ) . A )
sequently, the individual struts of the pyramidal and diamond 0 0.02 0.04 0.06 0.08 0.1 0.12
celled cores deform by plastic yield. We proceed to investigate tr M

blast performance of the pyramidal and diamond-celled core sand- ) ) ) )
wich beams at relative densitipssuch that elastic buckling of the Fig. 14  Comparison of the maximum blast impulse sustained
core members can intervene. The optimal performance [foptimal (&) diamond-celled and (b) pyramidal core sandwich

diamond-celled core sandwich beams with the constraiits Peams for selected core densities, with
=102 andw=0.1 is plotted in Fig. 1é) for selected values of
core relative density=0.02, 0.05, 0.1 and 0.2. The core is as:

$=5%10"% and h/L
=10"2, w=0.1. The yield strain of the core parent material is
assumed to be €,=0.002 and densification strain of the core is
taken as €;=0.5.

sumed to be made from a solid of yield strain=0.002 and
consequently cores of densijby=0.02 and 0.05 deform by elastic
buckling. While the performance of the low core density beams is

AL T T T T T 2

monolithic beam K

pyramidal core ” Lo

60 ----~

metal foam core

| hexagonal-honeycomb core Va . R
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Fig. 13 A comparison of the maximum blast impulse sus-
tained by monolithic beams and by optimal designs of sand-
wich beams, subjected to the constraint h/L=10"? with =5
X 1073, Results are presented for constraints w=0.1 and 0.4.
The core relative density is  p=0.1, €,=0.002 and densification
strain is e€p=0.5.

Journal of Applied Mechanics

slightly superior to thep=0.1 beams, these beams of low core
density have stubby designs with high valuesf@L. Thus, these
optimal designs become impractical for high blast impulses and
the curves in Fig. 14) have been truncated ef2L =0.2. A simi-

lar analysis was performed for the pyramidal core; these cores
deform by elastic buckling g#<0.015. The results for the opti-
mal blast performance of these beams are summarized in Fig.
14(b); again the low density cores provide superior performance
but the beams are stublflyigh c/2L) and hence practical designs

of these beams are unable to sustain high blast impulses. A com-
parison of Figs. 1) and 14b) reveals that over the entire range
of relative densities investigated, the diamond-celled core beams
always out perform the pyramidal core beams.

5 A Comparison of Structural Performance Under Air
and Water Blast Loading

Due to the low acoustic impedance of air, the Taylor fluid-
structure interaction parametgr=0 for an air blast, as discussed
in Section 3.2. In this section we discuss blast loading in air by
assumingy=¢h/L=0: The entire blast impulse is transmitted to
the sandwich structure.
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Fig. 15 Design chart for a sandwich beam, with a pyramidal diamond-celled core

core (p=0.1,€,=0.002,e,=0.5), subjected to an air blast. The 0.25F
nondimensional impulse is  /=1073. The regime of tensile fail-
ure is shown for an assumed tensile ductility of face sheets of
€~0.2. Contours of w and e, are included.

...... pyramidal core

Consider the representative case of a sandwich beam with
pyramidal core p=0.1ep=0.5e,=0.002), subjected to an air 0.1F
blast of magnitudé = 10" 3. The design chart is given in Fig. 15,
with axes ofc andh, and with contours displayed for the midspan

0.05F
deflectionw of the inner face and through-thickness core com
pressione.. The tensile ductility of the face sheet material is 0 ; , . . . ; \
taken to bee;=0.2 representative of structural steels; despite thi 0 001 0.02 003 0.04 005 006 007 008
moderately high value o&;, tensile failure of the face sheets M

dominates the chart with less than half the design space of Fig. 15

resulting in acceptable designs. In contrast, for water st  Fig. 17 (a) Comparison of the maximum impulse sustained by
8), tensile failure is of less concern even for a higher blast impulsgonolithic and sandwich beams for an air blast with the con-
of 1= 1072; the underlying explanation is that only a small frac_straint w=0.1. The core relative density and densification

tion of the impulse is transmitted into the sandwich structure @[

water blast loading.

9]

Fig. 16 Design chart for a sandwich beam, with a pyramidal
core (p=0.1,e,=0.002,e,=0.5), subjected to an air blast. The
beam deflection is w=0.1. Contours of / and M are displayed.
The arrows trace the path of designs which maximize the im-
pulsive resistance with increasing mass.
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rain are, p=0.1 and €,=0.5, respectively, and €,=0.002. (b)
he optimal designs of sandwich beams with pyramidal and
diamond-celled core.

A design map for air blast loading of the above pyramidal core
sandwich beam is given in Fig. 16, with contoursl atequired to
produce a mid-span deflection @f=0.1. The figure should be
contrasted with the water blast map shown in Fig. 10, again for
w=0.1; the only difference in the assumed values of the plots is
that y=0 in Fig. 16 andy=5x10"2 in Fig. 10. While the con-
tours ofM are identical in the two figures, the contourd afre of
markedly different shape. For the case of air bl&sg. 16) there
is no need to impose a constraint on the minimum valughfar.

The trajectory of ¢,h) which maximizesl for a givenM no
longer lies along a line of constahfL and is associated with
h/L=hc values in the range 0.003 to 0.032. The arrows shown in
Fig. 16 trace the optimum designs with increasing mass. This can
be contrasted with the water blast problem where the optimum
designs lay along the specified minimum valuehdf .

The air blast performance of the optimized sandwich beams is
compared to that of the monolithic beam in Fig.(d)7 Specifi-
cally, the maximum sustainable impulse is plotted against the non-
dimensional mas$/1, with the deflection constraint<0.1 im-
posed. In contrast to the case of water blast, the performance gain
upon employing sandwich construction instead of monolithic
beams is relatively small; at best the diamond-celled core sustains
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Fig. 18 The normalized deflection of the bottom face of a
diamond-celled core (p=0.1,€,=0.002) sandwich beam with ¢
=h=0.2 as a function of the normalized impulse, for two se-
lected values of the core densification strain €. The response
of a monolithic beam of the same mass  M=0.2 is included.

w
an impulse about 45% greater than a monolithic beam of equ
mass. The geometry of the optimal pyramidal and diamond-celle
sandwich core beams of Fig. (J are plotted in Fig. 1(b). For
both configurations¢ increases with increasing mass, with the
optimal pyramidal core beams having a loveetand a higheh)
as compared to the optimal diamond-celled core beams.

In water blast, the sandwich beam out performs the monolithi 0
beam mainly due to the fact that the thiand therefore light o 0.05 0.1 0.15 0.2 0.25 0.3
outer face of the sandwich beam acquires a smaller fraction of tl c
blast impulse compared to the relatively thick monolithic beam. ) ] o
However, in the case of air blast, the full blast impulse is tran§i9- 19 Comparison of the analytical predictions and the
mitted to the structure for both the sandwich and monolithire€-dimensional FE predictions of Xue and Hutchinson — _ [6] for
beams. The superior air blast resistance of sandwich beamsL deflection of sandwgﬂ beams with a corrugated core. The
monolithic beams, as seen in Fig.(aYis attributed solely to the 2S2MS have a mass M=0.04 and are subjected to an impulse
shape factor effect of the sandwich construction. To clarify thig. > <10~ The effect upon w and w, of (&) core relative den-

- . . . . sity p for ¢=0.1 and (b) ¢ with the core relative density held
point, the deflection of a sandwich beam with a diamond-cell§g st 5=0.04. The solid lines give the analytic solutions and

core (p=0.1c=h=0.2) is plotted in Fig. 18 as a function of thethe dotted lines (with symbols ) give the FE results.
air impulse for two assumed values of core densification strain

ep=0.01 andep=0.5 along with the response of a monolithic

beam of equal madd =0.2. Figure 18 reveals that the beam with

the core densification straie,=0.01 which maintains the sepa-solid material response, and include elastic buckling of the core
ration of the face sheets and is the strongest while the monolithiampers by assuming a solid material yield straja-0.2%. In
beam is the weakest: it is the shape factor effect that gives tfige with experimental data for metal foams, we take the densifi-
sandwich construction structural advantage in air blast. cation strainep of the core to be related to the relative dengity
through,[2],

1u_)o

-

6 Comparison With  Three-Dimensional Finite
Element Simulations

Xue and Hutchinsof6] conducted three-dimensional finite el-
ement(FE) simulations of the dynamic response of clamped sand- ) ) ) ]
wich beams with the corrugated, square-honeycomb, and pyramiXue and Hutchinsof6] investigated the effects of core relative
dal core geometries. In these FE simulations, Xue and Hutchinsd@nsity and core thickness for sandwich beams of total rivass
[6] modelled the core members explicitly including the develop=0.04 and considered an impulse5x 10 3. Comparisons be-
ment of contact between the core members and the face shéetsen the FE and analytical predictions of the maximum face
under increasing through-thickness compressive strain. An isheet displacements of the corrugated core sandwich beams are
pulse was applied to the front face of the sandwich beam and trsl®wn in Fig. 19: In Fig. 1@&) the effect of core relative density
their numerical results can be compared directly to our analytidal investigated witic=0.1, while in Fig. 19b) the effect ofc is
predictions for air blast, withy=0. studied for a core of relative densipy=0.04. While the analytical

Xue and Hutchinsof6] modeled sandwich beams made fronpredictions are within 15% of the FE calculations in all cases, the
304 stainless steel and assumed an elastic, power-law hardergéinglytical model does not capture the qualitative form of the
stress versus strain response for the solid steel with a yield straafiations as predicted by the FE analysis. A careful comparison
ey=0.2% and a power law hardening expondht0.17. In the with the FE results indicates that this is mainly due to the fact that
analytic predictions given below we assume a rigid, ideally plastfor | =5x 102, the analytical solutions predict full densification

€5=0.8-1.75. (72)
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0.3 T T T A neglected. Despite these approximations, the analysis has been
AN shown to compare well with three-dimensional FE calculations.

0.25k ’,f,_f\Q i Thus, the analy_sis pres_ented here is not only adequatt_e to explore
. & trends and scaling relations but is also expected to suffice to make
‘ approximate predictions for the purposes of selecting core topolo-

gies and sandwich beam geometries. The nondimensional formu-

las presented here bring out the stages of the response clearly and
hence aid the interpretation of more accurate numerical calcula-
tions such as the recent dynamic finite element analysis of Xue

and Hutchinsor6].

. Two notes of caution on the model presented here must be

o 0.15F monolithic

o1 %" pyramidal core mentioned. Recent numerical fluid-structure interaction calcula-
o ,ﬁ;;’ tions on similar sandwich structures performed by Belytsthp
0.05[ L7 b indicate that the one-dimensional Taylor analysis underestimates
aﬁf‘?‘ the impulse transmitted into the sandwich structure and thus the
Nt ) L . performance gains due to sandwich constructions indicated here
0 2 4 6 8 10 may be somewhat optimistic. Second, the failure of the face sheets
1087 near the supports by dynamic necking have not been addressed
here. Additional investigations are required to establish an appro-
Fig. 20 Comparison of the analytical predictions and the priate failure criterion under dynamic conditions.
three-dimensional FE predictions of Xue and Hutchinson [6] for
the deflection w of monolithic beams and sandwich beams with
corrugated, squgre—honeycomp, and pyramidal corgs. The 8 Concluding Remarks
beams have a fixed mass M=0.04 and the sandwich beams )
have a core of relative density p=0.04 and aspect ratio ¢ An analytical methodology has been developed to analyze the
=0.1. The symbols denote the FE results while the lines are the dynamic response of metallic sandwich beams subject to both air
analytical predictions. and water blasts. The response of the sandwich beams is separated

into three sequential stages: Stage | is the fluid-structure interac-

tion problem, stage Il is the phase of core compression, and in
in nearly all cases while in the FE simulations no distinct densstage Ill the clamped beam is brought to rest by plastic stretching
fication limit exits; rather, continued core compression occurs ahd bending. The simple analytical formulas presented above are
increasing stress level after contact has begun between the dargood agreement with more accurate three-dimensional FE cal-
members and the face sheets. An improved core constitutivelations given in a parallel study of Xue and Hutching6h
model with continued hardening rather than lockup after someThe analysis has been used to construct performance charts for
critical strainep may be able to address this deficiency; this ithe response of both monolithic and sandwich beams subject to
however beyond the scope of the present study. both air and water borne blasts. For the case of water blast, an

Xue and Hutchinsof6] employed a series of FE calculations tcorder of magnitude improvement in blast resistance is achieved by

identify a “near-optimal” sandwich configurations with mass employing sandwich construction. This is mainly due to fluid-
=0.04. They concluded that a sandwich beam with a core sfructure interaction: The reduced mass of the sandwich outer face
relative densityp=0.04 andc=0.1 (giving h=0.08) is an opti- eads to a reduction in the impulse transmitted to the structure
mal configuration for a moderately large blast. Comparisons bom the water. In air, the impedance mismatch between air and
tween the FE and analytical predictiotiwith the choicee, the face sheetis comparable to that between air and a monolithic
=0.5) of the deflections of the inner face sheet of these “optReam; consequently, the use of sandwich construction gives a
mum” sandwich beams as a function of blast impulse are shovfore moderate gain in blast resistance compared to monolithic
in Fig. 20. Over the range of impulses considered, the analyticg@nstruction. For both air and water blast the diamond-celled core
predictions are within 10% of the three-dimensional FE calculg&andwich beam gives the best performance due to the longitudinal
tions for the pyramidal, corrugated and square-honeycomb cd@igength provided by the core. Comparisons of the predictions
sandwich beams as well as for the monolithic beams. Note that fi@sented here with three-dimensional coupled fluid-structure nu-
FE calculations predict that the monolithic beam out performs theerical calculations and blast experiments need to be performed
pyramidal core sandwich beafie., smaller deflections at the to validate and extend this analysis.
same impulsefor impulsesl >5x 10 3. This is due to the wrin-
kling of the face sheets between the nodes of the pyramidal truss.
While this effect is not included in the current analysis, the an&cknowledgments
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A Nondimensional Number to
chanara s. veramani' | GlaSSify Composite Compressive
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A new nondimensional number)(to predict the dominant failure mechanism of fiber

Aerospace Engineering Department, reinfo_rced cor_nposit_es _under comprgssion Ioading_ is pr(_esented. Results from prev_ious
University of Michigan, experimental investigations on the failure of glass fiber reinforced and carbon fiber rein-
1320 Beal Avenue, forced vinylester matrix composites, respectively, were used to motivate and develop
Ann Arbor, MI 48109-2140 Experimental results available in the open literature are used to compare the predictions

of . This number can be used as a design tool to develop new composite materials with
a preferred failure mode. The exercise of developing such a number provides insight into
parameters that control the compressive strength of fiber reinforced composite

materials.[DOI: 10.1115/1.1756923

1 Introduction in Lee and Waaf6], Lee[13], and Lee et al[14]. Independently,

. . . . guni and Ravichandraf®], obtained expressions for splitting
el SMigC%nés;nb%?; iduﬁgzrzgiz%e f;'c“t'lr:g ?;riﬁﬂgtgephrgsi'g:'%? c?;Oc_mpressive strength of fiber reinforced polymer matrix compos-
p 9 Mes in the presence of lateral confining pressure.

posites. Howeyer, these modgls require that the fallgre meChan'.snbetails of the kink band failure mode under pure compression
of the composite under the given loading and constituent mater

roperties be known beforehand. Thus. a method to predict t d under combined compression and shear have been extensively
?'Ipr mechanism i p tul " unI’ trom the Vi P int died by Kyriakides et a[.15]; Vogler and Kyriakide§16] and
arlure mechanism IS very useful not only Iro € VIEW pOINt Olyq) | ot al.[17], who have used the AS4/PEEK material system at

predicting the failure mechanism a priori but also in understang-ﬁxed fiber volume fraction in their experiments. The effect of

ing the various factors that affect the failure mechanism of co ber mechanical properties and fiber volume fraction on the com-

posites under compression. Initial work on understanding COfzoqsion response of fiber composites has been studied by Yerra-
pressive strength behavior of fiber reinforced polymer matr

. A ) alli and Waaq 11]. Other practical and relevant considerations
compositeFRPQ was based on an elastic micro-buckling analyéf kinking, such as the effect of adjacent pli@rapier et al.

sis by Rosen1]. Later, Argon[2], Budiansky[3], and Budiansky g} ‘the effect of stress gradientdelf and Fleck 19]; Berbinau

and Fleck{4], realized that misalignments in fiber reinforcemen al.[20]; Khamseh and Wad@1]; Ahn and Waag22]; Drapier
cause the development of local shear stresses which coupled vg,l}ré' [23]‘. Wishom and Atkinsorf24]' Wisnom [25]) ,and size
maglx |nel?§t|C|]Ey Ieaﬂ_to but;]klln_g Of. flbelrls (;oli:_alll(y. Thg falluree ects (Bazant et al[26]), have also received attention. Com-
mode resulting from this mechanism is called kinking. Comparegh .4 1 the focus on kinking failure, relatively little attention has
to kinking failure, composites with brittle matrices or with fiberg .., paid to splitting failure.
of relatively large diameter tend to fail by fracture along the fiber oo aqent paper examines the previous experimental data on
matr;]x |_nterfac§, t;/vhen SUbJeCéeg to axial compression. Lh mpressive failure reported in the literature, with a focus on
ﬁrr;)eec; ?\gtSriT’invtverlf(;ci;SI f?:éirrgeeneryg;r?snfggfrz dsg)ezze:pﬁat?ind aerstanding the effect of three different parameters viz. fiber
- h o i . . X eometry(i.e., diametey, matrix mechanical properties and type
Experimental evidence for splitting failure is provided in Schut v )r prop yp

. X f loading (uniaxial or axial-shear loadingon compressive fail-
I[ES]y Lee and Waags], P(ljg%ottl_and ng’ alrjl_d Drzal eé Z?_I'[S]'. ure. These experimental data are then examined in the light of a
xperiments conducted by Lee and W46 Piggott and Harris o\ non_dimensional number that is used to classify the failure
[7], Oguni and Ravichandra®], and Piggot{10] on glass and mechanism

carbon fiber reinforced polymer matrix composites under puré o oner s organized as follows: First the results of previous
compression p_rowded insight into parameters affec“'ﬁg the Splgi(perimental studies on glass fiber and carbon fiber/vinyl ester
ting compressive strength of polymer matrix composites. Recefyqssjtes are summarized. This is followed by a discussion of
work by Yerramalli and WaaBL1], have high lighted the effect of failure mechanisms and their dependence on fiber geometry, ma-

combined loading on failure mechanisms while work by OguRyi, - hroperties, and interfacial fracture energy captured through

etal. [12], has shown the effect of multiaxial compression 0 hie analytical models developed earlier. The development of

failure mode transition in E-glass/vinylester composites. __and a discussion on how can be used to predict and demarcate
Splitting failure models for fiber reinforced polymer matrix.,mqressive failure mode and thus compressive strength, using

composites under pure'compression Ioadin_g usir_lg classical lin%@ﬁ'lable experimental results are presented next. Finally, con-
elastic fracture mechanics and energy considerations are preseRfg ing remarks are offered

Currently Post-doctoral Research Fellow, McKay Orthopaedic Research Labora-

tory, University of Pennsylvania. 2 Experimental Results on Glass Fiber and Carbon
To whom correspondence should be addressed.
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final revision; November 4, 2003. Associate Editor: M.-J. Pindera. Discussion on tl@ngth were used to study the compression behavior of glass fiber

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal ®fid carbon fiber composites to understand the effect of fiber di-

Applied Mechanics, Department of Mechanical and Environmental Engineerin ; ; ; ; ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will gemeter, matrix material properties, and interfacial fracture energy
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Table 1 Relevant mechanical properties of various fibers and Table 2 Comparison of splitting and kinking failure stress for
matrices glass/vinylester (dia. 24 pm) composite with misalignment
angle, ¢=2.5° and y,=0.1224 KJ/m?

E (MPa) G (MPa) ro (mm)

Goperment . Eq.(2) Eqg.(1) Fail. Mechanism

Glass fiber 72,000 29,508 0012 c

Carbon fiber 276,000 8960 0.0025 Vi A n  (MPa (MPa (MPa (MPa Lee and Waa6]

Silicon carbide 80,000 0008 571 773 615 1800 356 495 270 Splitting

Vinylester 3585 1318 02 10115 58 2400 438 629 389 Splitt

Lithium Aluminum Silicate 3585 : ) : ' plitting
03 886 525 2750 3235 536 505 Splitting
04 158 3 3140 232 428 619 Split/Kink
05 6868 12.44 3260 454 718 732 Split/Kink

0. 78.71 7.25 3630 37.23 639 845 Split/Kink

The diameters were selected based on availability. Carbon fibers

of 5 um diameters were studied. The material properties of glass

fiber and the carbon fibglassumed isotropjicand that of viny-

lester resin are given in Table 1. This table also shows the pragnd the available stored strain energy. Thus, a mechanism based
erties of other fiber and matrix systems, taken from the literatug@proach to studying failure should ideally include the effect of
(Budiansky et al[27]). The E-glass fibers were obtained fromeach of the important parameters like fiber diameter, fiber mis-
Vetrotex Certainteed and the carbon fibers from Hexcel corporgignment, fiber and matrix properties and type of loading on the
tion. Vinylester(Dow Derakane 411-C5Qresin was used as the resulting analysis.

matrix material for both type of reinforcing fibers. For the pure The expression for splitting compressive stres¥, as derived

compression tests, a special test fixture made of hardened sigglee [13], Lee and Waa§6] and given in Yerramalli and Waas
with four guide rods and a thick base was used. The four guigey] s as follows:

rods and the thick base was needed to prevent any macroscopic

buckling of the specimens. A schematic of the test fixture is shown sp / 8Vf2yf

in Fig. 1. To investigate the effect of matrix properties, the speci- Oer= m 1)
mens were subjected to compression-torsion loading using a

servo-hydraulic tension-torsion loading frame. For this purpos&hereVy is fiber volume fractiony; is interfacial fracture energy,
collet grips were used to grip the specimens since they can pf@-iS fiber radius,s and B are constants dependent on the elastic
vide resistance to slipping of the specimen in torsion and also pioperties of the matrix and the fiber. In terms of engineering
compression loading. Specific details of this experimental set@gnstantsg and g can be expressed as

and the experimental investigation are provided in Yerramalli and

Waas|[28]. Torsion loading subjects the matrix to shear, thereby S=E(+E, ifl)
changing the effective inelastic reponse of the matrix. As a result, Vi
the same matrix material, under different loading states provides a 2(1+ ) (1—2vy)
means to study the axial compression reponse in the presence of a= ;(V;l— 1)
an effective matrix material that has different quantifiable proper- Es
ties. This aspect is further discussed later. 21+ v )(1—2v +V ]
m m f
+
3 Failure Mechanisms Em }
Failure mechanisms that dominate the compressive behavior of B=[Ei+ (Vi *=1){Ep+4a(vi—vy)? ]t

polymer matrix composites are kinking and splitting. However

the factors triggering these failure mechanisms are entirely difféwf]ere ta ?_Lgbscnptn retf_ers tTohmatrlxbpz‘rI(;pe(rjtlesd andtatshubscr_ﬁplt
ent. Kinking is generally assumed to be a geometric instabilify 'S 0 fber properties. The sym andw denoté the axia

induced failure mechanism whereas splitting is governed by t pdulus and the poisson’s ratio of fiber or matrix depending on
propensity to fracture, where crack growth is initiated from pret- e subscript. l_:or'a unldlrectlongl composnkte with |'n|t|al misalign-
existing flaws. Splitting in FRPC is dictated by the balance b&®€nt ¢, the kinking compressive stress,, as given by the

tween the magnitude of the fiber/matrix interfacial fracture enerdyfgon-Budianksy-Fleck predictiosee Budiansky and Fle¢k]),
8

Load P L )
gty
l l l i l l i l l l l l l where 7, is the composite shear yield stress apdis the corre-
sponding composite shear strain. A comparison of the predictions

Ball Bearing f_rom Eg. (1) and Eq.(2) along vv_ith relevant mechanical proper-
Casing ties (shear modulusG,.., shear yield stress;, , calculated based
on the 0.5, criterion, Jelf and Fleck19], and the Ramberg-
Osgood fit parameters, A and n, as described in Jelf and Fleck
Steel Guide [19]) are presented in Table 2 and Table 3. The rightmost column
Rods indicates the failure mechanism observed during experiments. It is
] clear that in case of glass composites, E).tends to overesti-
Steel Grips mate the failure stress as compared to the predictions ofiEaqt
low volume fractions, where the failure mechanism is splitting. In
case of carbon composites, where the observed failure mechanism
Steel Base is kinking, the splitting model predictions are high compared to
the predictions from the kinking model of E@®). From the above
equations it is evident that fiber diameter, interfacial fracture

— —— —— energy—influenced by the type of fiber, and the effective shear
properties at failure—influenced by the nature of loadifgg.,
Fig. 1 A cross-sectional view of pure compression grips combined compression-torsiprare three important parameters
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Table 3 Comparison of splitting and kinking failure stress for
carbon /vinylester (dia. 5 mm) composite with misalignment
angle, ¢=2.5° and y,=0.06 KJ/m?

G&penment . Eq.(2) Eq.(1) Fail. Mechanism
Vi A n  (MPa (MPa (MPa (MPa Lee and Waa6]

0.1 67 6.62 1600 38.6 420 508 UG ————— TN e — e —
0.2 559 10.75 1800 58.8 400 886 Kinking

0.3 160 3 2400 48.9 371 1263 Kinking

0.4 100 53 3000 43.3 579 1639 Kinking

0.5 159 3.48 3316 41 648 2014 Kinking

0.6 9844 325 3750 36.4 233 2390 Kinking

) ) . pot Magn = Det~WD=jmees=—— 200 |im =
that control the failure mechanism and thus the failure strength 00 KV 6.0 8demSE_BT-VFIODI35S1 =T

fiber reinforced composites. In the following sections, a discus

sion of these three important parameters is presented. Fig. 2 Kink band in glass composites of fiber diameter 13.5

Effect of Fiber Diameter. As can be seen from Eql), the #m and V=10%
compressive splitting stress is inversely proportional to the fiber
radius and directly proportional to the fracture enesgy Thus,
one would expect that, if the fracture energy, fiber volume [6] for carbon and glass fiber reinforced composites are shown in
fraction, V¢, and the elastic properties of fiber and matrix are kefftig. 6. The variation of compressive strength as a function of fiber
the same, reducing the fiber diameter should result in an increAgdume fraction,V¢, shows that both glass and carbon fiber rein-
in compressive splitting strength. Based on the above modelfgrced composites have a similar trend. However, in interpreting
was decided to examine the results of previous experiments & results of this plot, care must be taken to associate the various
pure compression response of glass fiber composites reinforékéda points with the different failure mechanisms for the purpose
with glass fibers of 13.5m and 24um diameter, as a function of of using a mechanism based strength prediction.

fiber volume fraction, Yerramallj29]. Under pure compression Effect of Loading. Research into the compressive strength

ls(?;;n?ﬁ I -Yﬁadsegfesaesr-\fd f't[;?rt c;n;;qe;gr%rag |r.1c;?]a:§§e:n ;?'Iuﬁ%havior of fiber reinforced composites has shown that fiber mis-
gth wi ing 1 ! given noer v urT}aﬁignments cause a reduction in failure stress of the composites

fraction(as predicted by the spljtting compressive strength preciiﬁ'nder pure compressive loading. In case of multiaxial loading
tion (see Eq(1)), the compressive strength assumed a fairly Cofz ), resion-compression or compression-tojstha compres-
stant Va'.“? assoc_lat(_ad W't.h @ange'n the_ failure mechamsm sive failure strength and the failure mechanism are both affected.
from splitting to kinking with increasing fiber volume fractlon.Oguni et al.[12] studied the failure mode transition due to con-

The change from splitting to kinking occurs at arouM % gy ! L h ;
=40%. Even at a low fiber volume fraction of 10%, where spli\fé%ng pressure in E-glass/vinylester compositeth reinforcing

. ; : : ; er diameter of 24um). In the present paper, previous experi-
ting was observed in case of glass composites reinforced with ¢,y esuits obtained from compression-torsion loading of cy-
pm diameter specimens, the composite specimens reinforced wi

. ; . " . rical specimens of glass/vinylester composiféser diameters
853;?5;3(1?:)“13'ti‘g?e%'ameter failed by kinking for all the fiber of 24 um) and shown in Fig. 7, will be used for discussiee

At higher volume fractions(60%), the glass fiber composite Yerramalli and Waag11]). The failure mechanism observed in

with a larger diameter clearlv exhibits a higher compressi lass composite specimens under compression-torsion loading is
9 . y gner. P own in Figs. 4 through 8. It was observed that at high compres-
strength than the lower diameter glass composite with both exhih-

o - = ; . ; on to low rotation loading ratios, the specimens were failing in a
iting failure by kinking. This clearly shows the importance of flbe{: mbined splitting-kinking failure mode. On the other hand, at

Qia_lmeter on kinking compressive strength. A three-dimensior\;ﬁ h rotation loading, e.g., pure torsion, the failure was dominated
finite element model developed by the authOrerramalli [29] " avriy cracking due to twisting of fibers. At intermediate load-
a_nd Yerramalli an_d Wae{SBO]) has been _able to capture and proing ratios, kinking was observed to be the failure mechanism. In
vide an explanation for this result. It is noted that the Argon-
Budiansky-Fleck prediction of compressive strength does not dis-
play a direct dependency on fiber diameter. Instead, the effect of
diameter indirectly enters through the dependency on shear yi
strength of the composite. However, there are no known availal
results for the effect of fiber diameter on the shear yield streng i
of a composite.
The various failure mechanism observed in glass composites
24 um and 13.5um specimens are shown in Figs. 2 through 4. /
plot of the failure compressive strength as a function of fibe
volume fraction,V;, for both glass compositeseinforced with
two different fiber diametejsis presented in Fig. 5. Note that =
carbon fiber compositediber diameter of(5 um)) in the same
matrix material failed by kinking throughout the range of fibe
volume fractions studied.

Effect of Fiber Properties. The effect of fiber properties can 2 P
be inferred from previous experimental results and the predicti e s :wi il T g SO
formulas presented before. With different types of fibers viz. gla: ey E B s
and carbon, it was found that the compressive strength as well as
the failure mechanism changed. A comparison of the compressivg. 3 Kink bands in glass composites of fiber diameter 13.5
failure strengths as observed in the experiments by Lee and Waas and V,=60%
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Fig. 6 Comparison of compressive stress of glass and carbon

High resolution images of the marked circular region composites as function of  V;
as seen from the loading direction

Fig. 4 Splitting failure zone in glass composites with broom-

ing of fibers, 24 um and V;=50% to cause shear yielding of the composite and the matrix, glass
composites tend to fail by kinking instead of splitting. Similarly,
when a resin is partially curets was the case with the experi-

case of carbon/vinylester composites, the failure mechanism ments conducted by Piggdit0), it results in a matrix with a
y P : er shear yield stress, inducing the glass fiber reinforced com-

observed to be kinking throughout the range of loading ratlop(?sites to fail by kinking instead of splitting, since, splitting

examined. An interesting observation is that the same type : A . 5
composite changes it’s failure mode when stressed under differe\;arﬁUIOI have required higher compressive stresses to cause failure.

loading ratios. This observation was also made by Pigdddf

who found that the failure mode changed when the compositgs pimensional Analysis

were tested under pure compression with partially cured matrix. ) . ) ) .
The reason for the change in failure mechanism can be attributed Ne experimental results, as outlined in the previous sections,
to the magnitude of the shear modulus of the matrix and hence fiave revealed that the geomettiber diameterV;, misalign-
composite. As evident from Eq2), the kinking stress is depen- ment angle,¢) parameters and the fiber and matrix mechanical
dent on the shear properties of the composite. Hence, when @ fracture propertiess;, Ep,, Gy, andyf) are the most im-

torsional load is sufficiently high, beyond the magnitude requirdiPrtant parameters controlling the failure mechanisms in fiber re-
inforced composites. Based on this observation, a suitable dimen-

sionless number emerges that can be used to classify fiber
reinforced composites based on their failure mechanism.

800 -

® 700 :— 0 Glass flbar ='13.5)L Glass/Vinylester, V, =50%
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Fig. 5 Comparison of compressive strengths between glass Fig. 7 Comparison of compressive stress of glass and carbon
24 pm and 13.5 pm diameter specimens composites as function of  V;
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Fig. 8 Kink band in glass composite reinforced with 24 pmm 5t
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The first step in determining this nondimensional number is t LX 062 03 0.4 0.5 0.6
write a general functional relationship including all the terms rel Fiber volume fraction, V,
evant to the physical phenonmenon, which in this case is the
failure mechanism in the composite. Fig. 9 Classification of failure zones based on n

f(y1,2r0,Gc, bo)

Here, we consider only the basic material and geometric parakftiversal band splits the plot in Fig. 9 into two regions. Points
eters affecting the failure mechanisty. represents the interfacial located in the splitting zone correspond to composites that fail by
fracture energyG, is the shear modulus of the composite whici$Plitting. Points located in the bottom hdKinking zong corre-

can be calculated from the matrixG(,) and fiber G;) shear sponq.to kinking fallgre.. Points Iocgtgd in the band corrfespond to
modulus values and the fiber volume fractiaf, or determined ftransition between kinking and splitting, and the co-existence of
experimentally. 2, is the fiber diameter which represents fibePoth failure mechanisms as has been reported by Piggoit
geometry and, is a representation of initial fiber misalignment Oguni et al[12], and Yerramall{29]; Yerramalli and Waa$30].
These parameters can be written down in terms of their fundamérus, oncer is calculated, Fig. 9 can be used to a priori establish

tal dimensions K1,L,T). The units of y; are J/m which is What compressive failure mechanism is operative and thus an ap-
MILOT 2. Similarly, the variables,, G., and ¢, can be ex- propriate mechanism based compressive strength model can be

pressed ad°L1T®, MIL~1T~2, and radians, respectively. Thus,used.t.o predict the compregsive failure.sFrength. The \{vidth of the
the following nondimensional number now emerges transition zone and_the limits of th_e splitting zone at highcan
be further refined with more experimental data. However, the cur-
Vi rent plot, based on available experimental data, could be a useful
T Geary (3)  stepping stone for further classification and refinement of failure
] ] ) zones. If forany materialthe value ofy is lying between these
This number can be interpreted as a ratio of surface modulygo bounds, then based on thg value, the failure mechanism
(¢/ro—units of N/nf) to composite shear modulus. It can bexoyid be kinking, splitting or a combination of both.
seen that this nondimensional number incorporatesand ¢ Calculating the value of; for carbon fiber composites, we see
implicitly since the effective value of composite shear modulugat the curve of lofl/7) lies in the bottom half below the 13.5
G, is dependent on the fiber volume fractidfy,, and the initial  ,;m glass curve as shown in Fig. 10. This is the kinking region and
fiber misalignmentg, . is consistent with the experimental observation that carbon com-
4.1 Usefulness ofy. A progressive reduction in indicates posites fail by kinki.ng for all the fiber volume fractions tested.
that the shear modulus is increasing relative to the interfacial fraléyrthe_r, for comparison, _the vaIuQ Q_fhas been calculated for a
ture energyy; . A higher shear modulus will make it less condyC€ramic matrix composite and it is found that the curve of
cive to fail by kinking and causes the composite to split. Similarly°9(1/7) lies in the top part of the plot. This indicates that the

a largey implies that it is less likely for the composite to split angF€ramic matrix composite fails by splitting, and this is exactly

hence fail by kinking. Thus, using, an a priori prediction of the what was observed in the experimental results reported by Budi-
failure mechanism can be made for a given fiber and matrix cod"SKY et al{27].

bination the variation of lod/») against fiber volume fraction, . .
V;, is shown in Fig. 9 for a glass/vinylester composite with > Discussion

=6.75um and ro=12um and y;=0.1224KJ/M. The shear  As seen in Fig. 105 has been calculated as a functionvgffor
modulus of the composit& depends on fiber and matrix prop-different composite material systems. The valuegofhosen for
erties and the fiber volume fractiovt; and is given in Table 2 and glass fiber is 0.1224 KJ/rand for carbon fibers it was taken as
Table 3. Since, it was observed in the experiments that the gl&s86 KJ/nt. In case of Silicon carbide fibefsliameter is 16um)
composites of fiber diametéi3.5 um) failed by kinking for all  the value ofy;=0.022 KJ/m} was taken from the paper by Budi-
V¢, it is logical to assume the curve for 13:8n as a boundary ansky et al[27] and the composite shear modulus was calculated
for kinking and the curve corresponding to 2# glass composite using micromechanical formulas. Using these values, it has been
as a boundary for splitting and the zone in between can be defirdtwn in the previous section that the curves of carbon/vinylester
as a transition zone. It should be noted that the shear modulus @) and sic/lialsi lie in two extreme corners of the plot, while,
glass fiber(24 um) and glass fibe(13.5 um) reinforced compos- the curves for glass/vinylesté&V) composites lie in the center of
ites are taken to be the same for the calculatiom.oThus, this the plot. It can therefore be inferred that the glass composites
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Thus, for fixedG. andrgy, dp=dy;/G.ro,. Consequently, a

tested lie in a transition zone where the failure mechanismp% uncertainity iny;, translates to a 10% uncertainity i
changes from kinking to splitting or vice versa. This shows thgimilarly, the uncertainities i6, andr, can be used to calculate
importance ofy. Based on the magnitude of, a suitable fiber- the uncertainities iny. It can be seen from Eq4), that the
matrix combination could be chosen so as to have a particuly/dG, is inversely proportional to the square & andrg.
failure mechanism. Based on this number, one can explain thikus, indicating that the failure mechanism is highly sensitive to
reason why a glass composite of smaller diameter fails by kinkirtlge geometric properties of fiber and the shear modulus of the
while a glass composite reinforced with larger diameter fi24s composite.
um) fails by splitting. With the reduction in the fiber diameter the The implications ofy for the design of composites is now evi-
value of surface modulusy/2r o) increases for the same materialdent. As shown through the experimental results, carbon compos-
system. This makes the splitting failure stress larger causing tites failed by kinking throughout th¥; examined. Yet, as indi-
composite to fail by kinking. Similarly, when the glass compositegated by Eq.(1), the splitting compressive strength of carbon
of 24 um diameter fibers are subjected to compression-torsi@mposites is several times larger than the kinking streftgth
loading they tend to have a failure mode transition from splitting?)). Thus it is desirable tdesigncomposites such that they will
to kinking. This can be explained by looking at the valuenads fail by splitting. This implies a need to reduegfor carbon com-
a function of applied shear stress. Once the value of remotdlgsites. A reduction is possible by either increasing the value of
applied shear stress exceeds the value of shear yield styghen G or reducing the value of surface modulyg/t,. Experimental
the instantaneous shear modulus of the composite starts to rediggallts with Boron fiber composites, as described in Schiitz
and leads to a higher value gf A higher value ofp indicates that and Reed and Gold®1], show an elevated compressive strength
the shear modulus is very low which makes it easier for the co¥hen compared to similar composites with smaller fiber diameter.
posite to fail by local buckling of fibers leading to kinking. TheSimilarly, as shown in Fig. 5, a¥/;=60%, the larger diameter
nondimensional numbery was calculated for the experimental9lass composites failed at a higher compressive stress than the
data given in Piggotf10] and Yerramalli and Waagl1] and is s_maller diameter glass comp_05|(e$ the same fiber vo_Iume f_ra_c-
presented in Fig. 11. The data obtained from Pigftdi was for tlpn). Thus, carb_on fibers with a Iarg(_ar diameter WI|! exhibit a
aV;=30% glass composite with a partially cured matrix. The te§igher compressive strength than their smaleum) diameter
data from Yerramalli and Wagdsl1] was obtained from testing counterparts. One cannot keep Increasing the fiber d'ame.“?f in-
glass composites V;=50%) under combined compression-def'n't6|¥' however, W‘IthOl.,It cgn3|derlng othgr strgngth limiting
torsion loading. As can be seen, at a given fiber volume l‘ractio'iﬁ]e.Chan'Sr.ns suc_h as Interior flber_defects which will increase sta-
as the shear modulus decreased, (169 decreases. Once thist'ét'cally with an increase in material volume.
number approaches the threshold for kinking, which is defined %y .
the curve corresponding to the 13: glass fiber composites, the® Conclusions
specimens start to fail by kinking. This corroborates with the ex- A new nondimensional numbeyhas been presented to classify
perimental observations made by Pigdd#d] and Yerramalli and the compression failure mechanism of continuous fiber reinforced
Waas[11]. composites. This number was used to explain the causes for the

As mentioned in the previous section, the accuracy of the tragifferent failure mechanisms observed during compression testing
sition zone width is dependent on the experimental data availaloiepolymer matrix composites. Results from the open literature,
in the literature. Therefore, a sensitivity analysisdé in orderto  and from an experimental program that studied the effect of fiber
understand the influence of each parameter. Sinee; /G 2ryit  diameter, fiber properties and the type of loading were used to
follows that verify the predictions made by using It can be concluded from

dzy (4)
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A. E. Romanov A technique for elastic boundary value problem solutions for defects in solids is devel-
loffe Physico-Technical Institute, oped. The method is based on the introduction of virtual circular dislocation-disclination
Russian Academy of Sciences, loops distributed continuously for satisfying the prescribed boundary conditions at free
Polytechnicheskaya 26, surfaces and interfaces. The set of dislocation-disclination loops which may be used as
St. Petersburg, 194021, Russia virtual ones is considered. The elastic fields and energies of the selected dislocation and
e-mail: aer@mail.ioffe.ru disclination loops are presented. The method of the virtual circular dislocation-

disclination loops is then applied to obtain the elastic fields and energies of a spherical
dilatating inclusion in a plate and a half-space, of a prismatic dislocation loop parallel to
free surfaces of a plate and a half-space, and the elastic fields of a twist disclination loop
coaxial to a cylinder[DOI: 10.1115/1.1757488

1 Introduction straight-line defects in solid§9—-11], e.g., the elastic field of edge

. . dislocations and wedge disclinations normal to the surfaces of a

At present the technique of surface virtual defects to solvq d ined for the fi . L d Sad d

boundary problems in the theory of defects in solids is well ate were determined for the first time. Louat an Sa ananda

- used surface dislocation loops to solve the problem of a spherical

known. It was originally formulated by Lou&i] and then devel- . lusion in a half >

oped by Marcinkowski in the case of surface dislocati¢®k,The inclusion in a half-space,12]. . .
e ; SN ’ The present work deals with the development of a technique

generalization of this method for surface disclinations and for Sl

face flux lines in type Il superconductors was given by Roman%\{smg virtual dislocation-disclination loops along with a demon-
and Viadimirov[3] and Viadimirov et al[4], respectively. ration of new solutions. In the first part of this paper, we calcu-

The techni d foll " the fi Iasti late the elastic fields of particular dislocation-disclination loops in
e technique proceeds as foflows: the .|édad.g., elaslic or idinite media by the Mura metho@ee Section 2and determine
magneti¢ of the real defect in the medium with internal and Xthe type of the boundary value problems which may be solved
With the help of circular dislocation-disclination loops. In the sec-
ond part, we demonstrate the applications of this method for de-
) : R rmining the elastic fields and energies of a dilatating spherical
a nonsingular nature, e.g., for a prescribed distribution of surfage. ision in a plate and a half-space, of a prismatic dislocation

Ioadhs or displacements. ! def have field h_I op parallel to the free surfaces of a plate and a half-space, and
T e appropriate virtual defects have field components, WhigRe g|5stic fields of a twist disclination loop coaxial to a cylinder.
contribute to the boundary conditions. They are distributed con-1q technique developed here and the associated results have a
tinuously with an unknown distribution. In terms of these distriyariety of possible applications in solid state mechanics and phys-
bution functions, the boundary conditions are expressed as inf&s The elastic fields and energy of a dilatating inclusion in a plate
gral equations. The singular lines of the virtual defects aige seful for the analysis of the elastic behavior of nanoparticles
external to the considered mediufin the case of free surfacesi, thin films. The displacements can be explored to determine the
they can be placed on the surfaces, so these defects are namgfl,gation of film surfaces due to embedded nanoparticles. The
surfaced_efe_cts._ The integral equatlons_ca_n be solved for V'rtuail;_\ssociated elastic strains modify the physical properties of the
defect distributions, and therefore their fields can be found. Riyaterial both inside and outside the inclusion. For example, the
nally, the fields of the real crystal lattice defects may be fo“”d-_electronic properties, such as the band gap, can be substantially

The method of surface straight defects was successfully applighnged in the case of quantum dots, which from a mechanical
to find the elastic and magnetic fields of real defects, i.e., dislocgyint of view are nanosize dilatating inclusions. The elastic dis-
tions, disclinations, flux lines in type Il superconductors parallgfiacements of the circular prismatic dislocation loop in thin films
to free surfaces and interfacdd,~7]. The method was used by are necessary for correct identification of such defects. Modern
Belov, Chamrov, Indenbom, and Lotf] in the cases of straight {ransmission electron microscofJEM) permits precise experi-
dislocations emerging at planar boundaries by applying the teGjantal determination of the TEM contra@nage related to the
nigue involving surface dislocation segments. In our previoysesence of the defect in a thin film. For a detailed understanding
work, we proposed to explore virtual surface circular dislocationst the TEM contrast, the defect displacement field must be known.
disclination loops in the solution of boundary problems fofrherefore the elastic fields for a prismatic a dislocation loop in a
- _ o plate can be utilized for modeling the TEM contrast and the fol-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF lowing comparison with experimental observations. In addition
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- h | . f h . . . | . | ’
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept(—:‘mt e elastic sFresses and energy of the prismatic d!S ocation loop
ber 11, 2003; final revision, December 30, 2003. Editor: R. M. McMeeking. Discu€an be applied effectively for analyses of relaxation processes
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekifgrar nanosize clusters in semiconductor thin films. Fina”y, the
Journal of Applied Mechanics, Department of Mechanical and Environmental Engi- i ; ianli ; R ; ;
neering University of California—Santa Barbara, Santa Barbara, CA 93106-5070, ;gn lution of .the .tWISt dlsclynatlon loop in a cylinder can be.applled
will be accepted until four months after final publication of the paper itself in th&V en.co.n3|der|ng the twist of polymer macro-molecules in meso-
ASME JOURNAL OF APPLIED MECHANICS. size fibrils.

an infinite medium and a field of surfa¢eirtual) defects. Natu-
rally this method can be used for the evaluation of elastic fields
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All of our results for dislocation-disclination loops are derived
in the framework of isotropic linear elasticity. The compact forms
for the elastic fields of the dislocation-disclination loops involve
the Lipschitz-Hankel integralgd,13—17. The properties of inte-
grals of this type were investigated by Eason, Noble, and Sneddon
[18]. Their utility in writing the elastic fields of circular disloca-
tion loops was first carried out by Salamon and Dunda@.

2 Circular Dislocation-Disclination Loops as Virtual
Defects: Classification and Elastic Fields of the Loops

2.1 Plastic Distortion and the Mura Method. Toshio
Mura defined the plastic distortiqﬁﬁ for dislocations and discli-
nations in the following form[19]:

IBZ}:5i(s)[7bjfequwp(xqfxg)]v 1
where (Si(S):fSI S(r—r')ds, 8r—r') is the three-dimensional c
delta-function, S is th_e cut-_surfaqe with normai; , bi 1S the Fig. 1 Dislocation-disclination loops being used as virtual de-
Burgers vector of a dislocation,, is the Frank vector of a dis- fects in solutions of elastic boundary value problems. (a) Pris-
CIination,Xg is the coordinate of the rotation axis, aagl, is the matic dislocation loop.  (b) Twist disclination loop.  (c) Radial
permutation tensor. In Eql), the term in the rectangular bracketddisclination loop  (Somigliana dislocation ). The displacement
represents the jump of displacemefits] at the cut-surfaceS ~ jumps at the cut-surfaces are shown schematically.
related to the defect. Ifl9], the jump of displacements has the
opposite sense; this is due to the definition of upper and low faces
of the cut-surfacécompareg[19] and[9]). In general, the appear-
ance of a defect in a continuum can be decomposed into the founereb is a magnitude of the Burgers vectar,is a value of the
following steps:(i) make a cut alongs; ; (ii) displace the upper Frank vectorH(1—r/a) is the Heaviside step functiod(z) is
fa(;eg+ relative to the low faces; by value[u;]; (iii) insert(or the one-dimensional delta-function, aads the loop radius. In the
remove the material into the holes which ariger from the areas framework of the chosen coordinate syste@artesian or cylin-
of overlap; and (iv) “glue” the material atS" andS" . As a drical), the plastic distortions given by Eq@l) are linearly inde-
result of this procedure, a defect with plastic distortigfj is pendent. Some of the loops associated with these distortions are
ordinary disocation and disclinaton oo, & shour n Fig 1

The plastic d'Stort'or.'ﬂii allows one to obtain the total dis- 5 eyample. Fig. (c)). The elastic fields and energies for other
placement fieldly, , [19]: defect loops not shown in Fig. 1 can be found in earlier work,
° [9,11].

) — ) For the purpose of the present research, we consider only the
Un(r')=—Ii J f fécjimLmkﬁi*j exp(i§-r)dédéydé,, (2) prismatic dislocation loop, the twist disclination loop, and the ra-

dial disclination(Somigliana dislocationloop. These loops are
_ used as real loops and as virtual defect loops in the solution of
where Cj; are the elastic constants;, and 8}, are Fourier axisymmetric boundary value problems.
transforms of the Green'’s functids,,, and plastic distortior;Bi’} ,

respectively, and 1 = £,x+&,y+ £,z. For an isotropic medium 2.2.1 Prismatic Dislocation Loop. The plastic distortion of

the interstitial prismatic dislocation lodffrig. 1(a)) is

we have
2Gv Bt =bH 1—1)5(2). (5)
Cjik|:1_—2V 6} 0+ G( k91 + 3i1 Ojxc)s 2z a
) With the help of the Mura technique we find the total displace-
1 21 v)E Sk Emé ment field:
Lmic= 32 4 ' ®)
(2m) 2(1-v)G¢ b I
whereG is shear modulusy is Poisson ratiog,, is the Kroneker U=21-) (2v=1)J(1,1,0+ E‘](l’l;l)};
delta, andt?= &5+ £+ £5. Equationg2) and(3) can be then used
to obtain the elastic fields of dislocations, disclinations, and u,=0;
Somigliana dislocations of arbitrary configuration in an infinite b sgr(z) I2]
isotropic medium, and in particular, circular defect loops. uz=g— 2(1-1)J(1,0;0+ —J(1 0-1)} (6)
4(1-v ” a e
2.2 Elastic Fields of Circular Loops. In Fig. 1 we present ( )
some examples of circular defect loops. The loops have plasti€re
distortions depending linearly on the radial coordinatad have —1 72<0
trigonometric multipliers cog and sing in Cartesian X,y,z) and sgr(z)—[ ’ ' J(m,n;p)
cylindrical (r,¢,z) coordinate systems. In fact, the plastic distor- +1, z>0,

tions for these loops are initial terms of the Fourier expansion ae. Lipschitz-Hankel integrals[18], given by J(m,n:p)

ritten as % ;
Wi = [5Im(x)In(xr/a)exp(—«|Z/a)xPdx, and I, (k) is the Bessel
B7j=AotAicosp+B;sing, j=xy,z or j=r,¢z function.
; In the framework of linear elasticity and applying Hooke’s law
Ag=A,= Bl=(b+wr)H( 1— _) 8(2), ) for isotropic materials we find the elastic straing and stresses
a gj; . The stresses are
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rr 2(1 ) r (!!) 2(!!)3(11)
ar " '
<p<p2(:| ) r (1-) a(yy)ar(yy)y
()
zz 2(1 ) 3 ( (] ) 2 ( ] ) ]
Or;— — —J(1,1;2);
rz 2(]_1/) 2 ( 1=k ),

0,,=07,=0.

The stresses given by Ed3) satisfy the equations of equilibrium. 3,

2]

Gw sgnz) a
= 2(1/71)7\](2,1;0)733(2,0;2)+2J(2,0;1)

T 2(1-v)

)

NI
rs (2,11 |;

_Ga) sgn(z)
e 2(1—v)

a |z
2(1-) - I2,L0 - —I2LD

o

+2VJ(2,0;1)};

o, —=J(2,0;2);

zz 2(1_1/) a ( o ),
Or;= _||J212_J211 ;
rz 2(:]_1/) a ( that] ) ( 17 ) ’

Unp=0'w=0.

The Virtual Circular Dislocation-Disclination Loop

Note that Eqs(6) and(7) are equivalent to the formulas obtainedMethod

by Dundurs and Salamofi3,14 and Salamon and Comninou

[15] for a prismatic dislocation loop in two-phase material when In the framework of the virtual defect method the elastic field

the phases possess identical elastic properties.

pi; (displacements, distortions, strains, and strgseéshe real
defect placed in the medium with free surfaces and interfaces is

2.2.2 Twist Disclination Loop. The twist disclination loop presented as

shown in Fig. 1b) has the plastic distortion:

B;,=wrH 1—&) 8(2). (8)

__®©

Pij pij+ipij )
where “pj; is the field of the real defect in an infinite medium
without interfaces anth;; is the additional field, due to ensembles

(14)

form:
wa
Up=—-5gM2)J(2,1;0);

u,=u,=0, ©)

and the stresses are

Gw
Tro=— 7sgr(z)J(z,Z;l);

Gw
UZ¢=—7J(2,1;1);

O =0 gy = 031= 77 =0. (10)

tion functions¥f (index k is a counter for virtual defect en-
sembleg The boundary conditions at the free surfaces and inter-
facespij|3=a are then rewritten with respect to Eq44), and
become integral equations for the unknown distribution functions.
Virtual defects are placed outside the medium in which their elas-
tic fields act. In the limit case, they can be placed directly on free
surfaces. The problem exists of how to choose the appropriate
defects as virtual ones.

For cylindrical symmetry problems the external and internal
surfaces can be planar, cylindrical, spherical; and the real defects
can be point defects, straight linear and circular loop defects,
volumetric cylindrical, spheroidal, and two-axes ellipsoidal de-
fects. In the case when the combination of the boundaries and real
defects have cylindrical symmetry we arrive at a problem of cy-
lindrical symmetry. For point and volume defects we have addi-
tional requirements concerning their plastic distortions. These dis-
tortions must admit their representations via distortions of circular

2.2.3 Radial Disclination Loop. Consider the radial disclina- defect loops distributed continuously while retaining cylindrically
tion loop (Somigliana dislocation which can be defined by the symmetric geometry.

procedure depicted in Fig(d). The plastic distortion of this loop

defect is

ﬁ§r=er(1f é) o6(2). (11)

In solving boundary value problems with cylindrical symmetry,
we introduce dislocation-disclination loops as virtual defects. In
this article we consider two possibilitieg) the distribution func-
tions ¥f depend on the loop radius afid) the distribution func-
tions¥f depend on the position of the virtual loop.

For planar boundaries, ensembles of virtual circular loops are

The total displacements of the radial disclination loop are giveilaced either on free surfaces or at some distance from the inter-

by
u,=0;
wa |Z]
uz=m (21/—1)J(2,0;0)_;3(2:0?1)}- (12)

The stress field is

Journal of Applied Mechanics

faces,[12-14. Then the boundary conditions lead to integral
equations for unknown radius-dependent distribution functféns

mpij|8+2k Jo “f(a)*p;j|sda=a, (15)
wherea is the loop radius, anﬂpij is a field due to the virtual
loop from thekth ensemble. It is necessary that the angular de-
pendence of the elastic field components of the virtual defects
corresponds to the angular dependence of the elastic field compo-
nents of the real defect. Since the elastic fields of the circular
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loops have the Lipshitz-Hankel integral representation, it is effi- 1'f g-f
cient to apply the Hankel-Bessel transformation to EfS). The L S
direct and reverse Hankel-Bessel transformations are defined as, 0 I 3
e.g.,[20]: free
_——/
surface y X
Hy(k)=f P(r)J,(rN\)rdr, (16) t
0
«ﬂ(r)=f H,(A)J,(rA)NdA, 17
° Bt 2+f
whereH () is Hankel-transform of the functiog(r). The index free
v indicates the kind of Bessel functidy(Ar) used in the core of
. surface
the transformation.

In the case of cylindrical surfaces, ensembles of the virtual
circular loops are placed on cylindrical surfaces and transform the
boundary conditions to integral equations for unknowRig. 2 Spherical inclusion in a plate. Distributions of virtual

coordinate-dependent distribution functions: loop defects are shown on the plate surfaces.
xpij|8+2 f “(20)*pij(2—20)|sd2o= . (18) w i & (A V)Repn
k — oo ur =——— r’
3(1-v)
. . ) o (i) _A-
Equation(18) are solved with the help of the Fourier transforma- u, =0;
tion. . . . . ¥ (1+v)Rgpn
The boundary conditions on the interfaces are usually given in =yl = —p (z—h):
terms of displacements or tractions. The number of necessary loop 3(1-

families corresponds to the number of the boundary conditions on

*
the surface. For instance, in the case of an internal phase boundary xu<out):8 (1+v) RSP“, r _ .
between medium | and Il there are six sets of boundary condi- ' 3(1-v)  (F2+(z—-h)?)¥?
tions: three conditions for displacements and three conditions for o, (ouh
stress components. Therefore, the number of virtual loop families u, =0;
is six, but it is enough to use only three types of virtual loops. . -
Three loop distributions are located in medium | and influence oou(out)zg (1+V)Rsph_ z—h . (19)
medium Il and three loop distributions are located in medium I z 3(1-v) T2+ @_5)2)3/2

and influence medium |. In the case of a free surface there are

three conditions for the components of the traction vector. There- o (i) (i) (i AGE*(1+v)
fore the maximum number of virtual loop families is three. In I = oo™ T2z 7T T3(1—y)
general, the number of boundaries does not influence the number ) ) )
of virtual defect types. As a result, prismatic dislocation loops, “oll =g ="gN=0;
twist disclination loops, and radial dlscllnatu()Somlgllana dislo- -,
cation loops may be used as virtual defects in polar angle inde- o,y 2G&*(1+») [ 2 . 3(z—h) )
pendent elastic problems of cylindrical symmetry. For defects’rr ~ 3(1—v) (Fz+(2_ﬁ)z)3/z (Fz+(2_ﬁ)z)5/z '
with angle-dependent elastic fields, e.g., edge dislocations, one
can utilize another set of virtual loops having the same angle (out 2Ge* (1+v) 1
. . . o« _(out) _ 3 _ .
dependence, e.g., glide dislocation loof®s11]. P 3(1—) 2+ (= h)2)3’2'
- om_ 2Ge* (14 ) 1 3(z—h)?
Oy = = = ;
zz 3(1— V) (FZ+(‘Z‘_ h)2)3/2 ('72+(2_h)2)5/2

4 Elastic Fields and Energies of Defects in Axisym- (20)
metrical Problems o tow_2Ge* (1+v) —3?(2—h) .

4.1 Spherical Inclusion in a Plate and a Half-Space. Con- " 3(1-v) \(r2+(z—h)?)5?)’
sider a spherical dilatating inclusion located in a plate of thickness o {(oU e _(oul
t as shown in Fig. 2. The plastic distortion of the inclusion is Orp = 0y =0.

1reQy

Bix=Byy=B3,=* 8(Qgp), where 5(Qgp) = {orea; h} Qgpn IS Here superscriptén) and(out) designate the solutions inside and
the area of the inclusion: and =AR/R characterlzes the relative Outside the inclusion, respectively. We use normalized variables
change of the inclusion radius. The latter may also be interprefést I'/Rgpn, zZ= 2/ Rgph, h= h/Rgpn, and Ry, is the radius of the

as the misfit strain characterizing crystal lattice mismatch betwegpheroid. We work in a cylindrical coordinate system, with coor-
the inclusion and the surrounding matrix. Referring to the georginatesr, ¢, andz.

etry and coordinate system shown in Fig. 2 and assuming that thén the free surface of the plate the following boundary condi-
elastic properties of the inclusion and surrounding matrix are thiens for the total stress field;; = "oy +'oy; must hold:

same, the total displacemerits; and elastic stress€Sr;; of an

inclusion in infinite media ard21]: Tl =0, j=r.e.z. (1)
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The inclusion stressésr,, and” o, given by Eqs(20) contribute defects possess stress componentsand o,, and a component

to the boundary conditions given in Eq&1). To satisfy the o, vanishes. Rewriting Eq$21) with the help of the fields of the
boundary conditions we assume that an additional ﬁdg is virtual loops we obtain the integral equations with respect to un-
generated by the distributions of circular prismatic dislocatioknown functions of loop distributions™ f(a), 2~ f(a) placed on
loops (ensemble X and radial disclination loopgensemble 2 the surfacez=0 and!*f(a), 2*f(a) placed on the surface
placed on the free surfaces of the plétee Fig. 2. These virtual =t:

©

DC‘7-(2’;Ut)|z:0'i'J 17f<a)'170'zz|z:0da+J l+f(a)'1+0'zz|z:0da+f 27f(a)'270'zz|z=0da+J 2+f(a)'2+0'zz|z:0da:0;
0 0 0 0

%

wa;‘;“m:ﬁfo "f(a)-'" o,),-da+ fo *f(a)-**o,),-da+ fo 27f(a)-?" 0,4,-da+ fo 2*f(a)-?" 0,,,-4da=0;

(22)
Yf(a)- 1ol modat j 27f(a)-?" oyl —odat f #f(a)-?" 0y,l,-0da=0;
0 0

©

“ol 0, o+ J 17f(a) 1 ay,l,modat J
0 0

©

Dc(7-£(z)m)|z:t'i'J' 17f(a)'170rz|z:tda+J' 1+f(a)'l+‘7rz|z:tda+J’ 27f(a)'270rz|z:tda+f 2+f(a)'2+0'rz|z:tda=ov
0 0 0 0

whereko—jz|Z:0 and kojz|z:t (k=1+, 1—, 2+, 2—; j=2z,r) are stresses of the virtual loops from ensemblémdex 1) and 2(index
2) on the surfaceg=0 (index —) andz=t (index +).

To proceed further we substitute E@8), (13) into Eqgs.(22), introduce a new variablg= «/a, change the order of the integration,
and transform Eqg22) with the help of Hankel-Bessel transformation Ef6) with the coreJy(r B) for the first pair of equations and
J,(rB) for the second pair. Finally, we obtain a system of algebraic equations for funétidhs*H, 2~ H, 2*H, with 1 1*H
=[5 ¥ f(a)d(aB)adaand? * H=[; 2 ?"f(a)J(aB)a’da:

2Ge* (1+v)RY,, Gb | - Go -
T 1T 1= 1T gy AR T H S S BRy T H=0;
2Ge*(1+v)RY, Eg . . o .
T 3(1-v) E_[z(l—v)(”tﬁ)EO' H*2(1—v)' H+2(1—V)IBE°' H=0; 23)
2Ge* (1+ )R, Gb - Go Go -
31— Port gy PR Mgy Hogpyy (1B H=0:
2Ge*(1+ )Ry, E;  Gb . w . ® o,
e B, 2(1-p) PR Ho o=y 1 BEe " H- 53— 57 H=0,
whereEy=exd —tB] andE;=exd —ha].
Solving this system we find
L, 4s*(1+w)RY, Eif[—1+EGE; %(1+2tB)— EgEy +E3(1-2tB)]
H= 3b ’ 2,2 2,2 n2 '
(1-Ep“—4EqtB
b Ag*(1+ V)Rg’ph. Eq 'E1B[—Eg—ESET *+EGE; A(1-2tB) +Ef(1+2tB)]
3b (1-E3)2-4E3t24? ’ (24)
2y 48*(1+V)R§ph~ E1Bl1+ESE; %(1-2tB)—EQE; *~E5(1+2tB)]
3w (1-E§)?—4E5t?2 ’
2o 48*(1+V)R’;‘ph. E, 'E.B[Ej— ESE; 2+ EJE; 4(1+2tB)—E3(1—2tPB)]

3o (1-E§)?—4ESt?B?

Equations(23) can be considered a general system for a prob- Using the normalized Hankel-Bessel transforms of the distribu-
lem of cylindrical symmetry for defects in a plate for whithr,, tion functions! H, *H, 2" H, 2*H, i.e., the second multipliers
and “o, are the relevant stress components in boundary congi-the right hand side of Eqg24), and the elastic fields of the
tions given by Egs(21). To treat the other defect one shouldorismatic dislocation loop given by Eq&) and (7) and radial
rewrite the free terms, which are the Hankel-Bessel transforms dibclination loop given by Eqg12) and(13), one can easily find
the stresses, i.ef5Jo(rB) 07d,-ordr, [gJo(rB)"o;d,-rdr,  the additional fields of the displacemetis and stresser), of
1531(r B) o] s=ordr, [531(rB)*oy,l,—rdr, of the considered the virtual surface loops. Finally, the displacements for the dilatat-
real defect. ing inclusion in the plate are
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e* (1+ )RS,

A e

+1+H

d,8+ fm l(r/;)(l—ﬁz/aEer“ﬁ(t

2+H d,8+

E = N
—Z)BE—Z dB+2(1-v) L Jl(rﬁ)(z’H

* ~ ~ E
+f Jl(rB)(—2_HZﬁE2+2+H(t—Z),8E—O)d,B};
0 2

(25)
e* (1+ )R,

u,="u,+ 3=,

[2(1—V)JxJo(r,3)(lF|E2
0

1+ 2

E = - -
E° d,3+f Jo(rﬁ)(l‘Hz,BEz—“H(t
2 0

-2)B d,8+

Eo = ( Eo
= d,8+(2v—1)j Jo(rB)| 2 HE, +2+H
E; 0

< ~ ~ E
+f Jo(rﬁ)(—Z—HzﬁEz—“H(t—z)ﬁE—O)dﬂ},
0 2

0sz=t, Rgirshst—Rgy,

where Ez—exp[ zB]. Inside and outside the inclusiofiy;
==uf™ or “u;="u{®?, correspondently.
The correspondlng stress field has the following form:

. 2Ge*(1+ V)Rsph 1-2v o~
O = Ot 3(1-v) r fo (rﬁ)(l HE,
+17H = d,B+J (rﬁ)(l’ﬁzBE2+l*ﬁ(t

E * ~ ~ E
—Z)BE—Z)BdB— fo Jo<rﬂ>(1‘HE2+”H E—Z)Bdﬂ

1 1+ Eo
- 1(rﬂ) “HzBE,+ H(t—Z)ﬁE—z dg

2(v-1) (= fE_2RE ’
$ 2 )f Jl(rﬂ)(z_HEZ_2+HE_O)dB_f oA
0 z °

( Hz,BE2 2*H(t—z)/3 ),Bdﬁ+2fm\]0(rﬁ)

2"HE,—2"H ),Bd,B-i- rJl(rﬂ)(Z—ﬁzﬁEz

—”ﬁ(t—z)ﬁi—;’ dﬂ};

2Ge* (1+ V)Rsph 2v—1

_w
Tpe™ Too

+1tH )dﬁ 2yfm30(r3)(1—ﬁ52 +H ),Bdﬁ

1 (> . ~ Eo
+—f Jl(r,B)(l HzﬁE2+1+H(t—z)ﬁ—)dﬁ
0 E,

r
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L20 rJl(r/s)(Z*ﬁEfz*ﬁ E)d/}:
0 E.

2vJ'mJ0(r,8)(2’ﬁ
0

2"HzBE,—-2*H(t—-2)B )dﬁ}

2Gs* (1+ )RS, .
Py | [ wen e

~"H )ﬁdﬁ— T f:h(fﬁ)

=" 0~
+1H ),3d/3+fx (rﬁ)(l‘ﬁzBE2+l+ﬁ(t

E @ ~ -
—Z)BE—Z> BdB— JO Jo(rﬁ)(szzﬂEz—“H(t

-2)p )Bdﬁ} (26)
2Ge*(1 R ~ ~
Orz= Oz~ W[J 1(I’,3)(17HZ[3E2*1+H(12

E * ~ -
—Z)BE—Z)ﬁdB— fo Jl(rm(Z*HzﬁEz#*H(t

—7)B= )Bdﬁ+fm 1(fﬁ)( “HE,+2'H )Bdﬁ}

0,,=0,=0, 0szs<t, Rgpshst—Rgy,.

The stresses given by Eq®6) satisfy boundary conditions ex-
pressed in Eq921) and the equilibrium equations.

In the limit case when the plate thickness: we find the
displacements and the stresses of the inclusion in a half-space:

(3—4v)t 6Fz(z+h) |
['F2+(2+F1)2]3’2 ['F2+(2+F1)2]5’2 !
u,=0; (27)

£*(1+ v)Rgpn
3(1-v)

u,="u,+

(4v—3)(z+h)
['F2+ (z+’|5])2]3/2

£*(1+ v)Rgpp,
3(1-v)

u,="u,+

- 27[2(z+h)2-72]|
ﬁ2+(2+’ﬁ)2]5/2 !
2Ge*(1+v)
3(1-v»)

2(2v—3)
[?2+(2+E)2]3/2
- 302(z+h)3
[F2+(2+F1)2]7’2
(3—8v)
[F2+(2+T1)2]3’2
- 6(z+h)[(1-2»)(z+h)—h]|
[F2+(E+F1)2]5’2
2Ge*(1+v)
3(1-v)

0

O = Oyr

- 3(2+h)2—12(z+h)(3z+h)
[F2+(§+F1)2]5’2

2Ge*(1+v)
eot 31—

_®
Opp= 0

1
[F2+(2+F1)2]3’2
302(z+h)* |
[’F2+(2+F1)2]7/2 !

Oz7= Oz7—

_ 3(z+h)?-1&(z+h)
[F2+(2+F1)2]5/2

(28)
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. 2Ge*(1+w)|  F(z+h) g 2f
R e (e T : T
- ~ free '
_ SrAa@z+h)* -] surface X
[’F2+(2+F1)2]7/2 !
02,=07,=0; t

8Ge*(1+ )2  2(2+h)2—72
3(1-v)  [F2+(z+h)2P2

Tro=Tro+

0=z Rg=h. T+ 2% |
i
The results of Eqs(27) and Eqs{(28) can be compared with the free
general results obtained by Seo and Mura for an ellipsoidal inclu- surface
sion, [22]. ]
The elastic energy of an arbitrary defect is defined &3] *z
Fig. 3 Prismatic dislocation loop in a plate. Distributions of
E=— 3 J Uij,Bi’] dv’, (29) virtual loop defects are shown on the plate surfaces.
\Y

whereV is the entire volume of the medium. thicknesst (Fig. 3). The center of the loop has coordinates

Utilizing Egs. (26) or Egs.(28) we find the energy of the di- (0,0h). The plastic distortion of the loop, its total displacements
latating inclusion in a plate or in a half-space. The energy of thia;, and elastic stressé€sr;; in an infinite medium are given by
inclusion in a half-space is Egs.(5)—(7) by replacingz with z—h. For satisfying the boundary

conditions Eqs(21) we again represent the resulting elastic field

as a sum of the loop field in an infinite medium and an additional

8wGe*%(1+v) Rg’ph 47Ge*2(1+ v)zRﬁph 1 field due to the distributions of virtual loops. In this problem we
= 3(1-») 9(1-v) 'F use prismatic dislocation loops and radial disclination loops as
virtual defects. The solution of this boundary problem is similar to
Repr=h. (30) that of the spherical inclusion.

Substituting the free terms in Eq923) for —(Gb/2(1

. . . L = )agdi(aB)(1+hB)Ey, —(Gb/2(1-v))agd (aB)(1+(t

Here the first term is the energy of inclusion in infinite medium-h)B)E,/E,, +(Gb/2(1-v))agd 1 (agB)hBE, and
and the second term is the interaction energy between inclusiefGh/2(1— v))agJ;(ay8)(t—h) BEy/E; and solving the result-
and the free surface. ing system we find " H, **H, 2"H, 2*H for the case of pris-

4.2 Prismatic Dislocation Loop in a Plate and in a Half- matic loop in a plate. The normalized functiohsH, **H, ?"H,

Space. Consider an interstitial prismatic dislocation circula®™H appearing in expressions for the displacements given by Egs.
loop with radiusa, that is parallel to the free surfaces of a plate 0f25) and stresses Eq&6) are

—(1+hp)+EZE; %(1+2tB—hB+2t2B2—2thB?)

1"H=ayJ,(a,B8)E
0 l( Oﬂ) 1 (1—E(2))2—4E(2)t232

. EQE1 2(—1+hp)+E§(1—2tp+hp+2t°—2thp?) |
(1-E§)?—4E3t?B? '

L 200 )El Eg(1+h,87t,8)+ESE[2(1+thh,B)+ ESE; (—1+tB+hB—2thB?)+E5(1+tB+hB+2thB?)
=—apJy(apB) = ;
o8B g, (1-E2)%—4EQ°2 (1-E2)?—4EQ%p2
(31)
ym hB+EZE; 2(—hB—2t2B%+2thB?) EGE; *hB+E3(—hB+2t282—2thB?)
H=aoJ1(aB)E; 2\2 2:2 g2 + 2,2 2:2 p2 ;
(1-Ep“—4Eqt"s (1-Ep“—4Ext"s
ot E.| Eg(tB—hB)—EZE; 2(tB—hp) EGE; *(—tB+hpB+2thp?) +Ej(—tB+hp—2thp?)
H=—a0J1(a0B)E— 2.2 2:2 02 + 2,2 2:2 o2 .
0 (1-E2)2-4E%%B (1—-E2)2-4E2t%B

Finally, the displacements of the interstitial prismatic loop iy b/4(1-v).

the plateu; acquire the form of Eqgs(25) with “u; taken from  The stresses due to the prismatic loop in the plate may be found
Egs. (6) and replacing the coefficient* (1+ v) Rﬁ'pr(B(lf v) in a similar manner.
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In the limit when the plate thickneds—, we obtain the dis-
placements and elastic stresses of the prismatic loop in a half-

space:

|z—h|

=h)

u,= (2v—1)J*(1,1,0)+ J*(1,1,)—(2v

4(1—v)

z+h 4(1-v)h
-1)J*(1,1,00— —J* (1,1;1)+ ——JI**(1,1;1)
=l =l
2zh
- — I (1,12 |;
)

u,=0; (32)

z—h
u, 2 sgniz—h)(1—v)J*(1,0;0)+ a—OJ*(l,O;l)

T4(1-v)

z+h
—2(1—v)J** (1,0;0)— a—J** (1,0;1)
0

2(2v—1)h 2zh
I (1,0;1) - — I (1,0,2)|.
ao ag

_ Gb
T 2(1-v)

1-2v |z—h|
F(LL0+ ——J*(1,0;2)
r ag

Oy

! o |Z_h|J* 110 - 2% 3o (1.1:0
IO - L - I (L1

z—3h

2
0

4(1-wv)h 2zh
- ——— I (LL)+ - (1,1,2)
aof agr

1 z+h
J**(1,0;2+ —JI** (1,0; )+ —JI** (1,1;1) —
ap agr

2zh
- —5 I (1,0;3
Qo

_ Gb
e 2(1—v)

|z—h|

of

2v—1 2v
—J*(1,1;,00— —J*(1,0;1)
r ag

[oa

+

* 1) — 2v—1 *% . Q *% .
J*(1,1;1) ; J**(1,1;,0+ a J**(1,0;1)
0

z+h 4(1—v)h
— I (1,1 D)+ ————J** (1,1;1)
agr agr

)

4yh 2zh
+ I (1,0, — - I (1,1;2)
g apl

_ Gb
" 2(1-v)

1 |z—h|
— —JN(L,0,) - - J*(1,0;2)
a

Oz7
g o

’

1 z+h 2zh
+ I (1,0)+ —5- I (1,0, + —- I (1,0;3)
ao ag ap
(33)

_ Gb
T 2(1-v)

Orz

z—h z—h
- (AL + —- I (1,12
o o

2zh
+— 3" (1,1;3)
CH)
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Fig. 4 Twist disclination loop of radius a, coaxial to a cylinder.
Distribution of virtual twist disclination loops is shown on cyl-
inder surface.

0,,=07,=0, 0=z

Here  J*(m,n;p)=J{Im(x)In(xr/ag)exp(— klz—h|/ag)kPdk
and

J** . — DCJ J ( r) F{ |Z+h|
(Mnip)= | In()da| x5 fexp —x

0

«Pd«k.

The solutions expressed in E¢82) and Eqs(33) are compact;
they satisfy the boundary conditions E¢&1) and the equilibrium
equations. They may be compared with expressions given by
Dundurs, and Salamdr4].

The energy of the prismatic loop in a half-space has the follow-
ing form:

Gbh?a, 8a
E= 0 0

T 2(1-v)

r=a,
rcore 0

2)—W<J**(1,1;0)|Z—h

+2—hJ**(11-1)|Z:h+2—th**(11-2)|2=h (34)
2 Bt 2 L2

wherer ., is the core cutoff radius of the loop.

The first term in Eq(34) is the energy of the prismatic dislo-
cation loop in an infinite medium and the second term is the
interaction energy between the prismatic loop and the free surface.

4.3 Twist Disclination Loop Coaxial to a Circular Cylin-
der. Consider a twist disclination loop of radigg placed co-
axially in an infinitely long elastic circular cylinder of radiug as
shown in Fig. 4; the coordinates of the loop center(8;6,0. On
the free surface of the cylinder, the following boundary conditions
for the stress field must be fulfilled:

G'rj|r:r0:Or i=r.e.z (35)

The twist disclination loop has the stress compongnt(see Egs.
(10)) contributing to the conditions Eq$35). We present the re-
sulting field of the twist disclination loop in the cylinder in the
form of Egs.(15). The additional field'p;; is produced by the
virtual twist loops distributed in the manner shown in Fig. 4. All
virtual loops have the same radiug. Then the boundary condi-
tions Eqgs.(35) can be rewritten in terms of the distribution func-
tion f(zp) of the virtual twist disclination loops:
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Gw ana dislocationhave been used as virtual defects for obtaining the
f(zo)[ - TSQ[‘(Z elastic fields of a spherical inclusion and a prismatic dislocation
* loop in a plate and a half-space, and the elastic fields a twist
disclination loop in an elastic cylinder.
dz,=0. In conclusion, we have developed the general technique of cir-
cular virtual dislocation-disclination loops for the solution of the
axisymmetrical elasticity boundary value problems.

0

Gw )
— 2 SDI2 2Dy f

Z,
o kdk

K

—2p) fo Jo( K)Jz(K)eXF{ - |
(36)
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Discontinuities in the Sensitivity Curves Govering Equations

i i 1 The governing equations are derived for the Donrjdl], and
of Laminated Cylmdrlcal Shells Sanders[5], kinematic relations|[6]. They are obtained via the

variational principle for laminated cylindrical shell. Formulation
Yiska Goldfeld of the two approaches is based on the displacement components in

s the axial (1), circumferential ¢), and normalw) directions.
Research Scientist The equilibrium equations read:
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The discontinuity in the sensitivity of laminated cylindrical shells
is investigated via the initial post-buckling analysis. A general Ny 0
procedure for sensitivity, based on Koiter’s parameters and using —CW(W,B—UH ?W,x} =0
the Donnell and Sanders shell theories, is developed and used for
parametric study of the discontinuity phenomenon. It was found
that the discontinuity occurs at points of change of the circumfer- 2Mygxo  Mag,00 %HN W) (NggW g) ¢
ential wave numbefDOI: 10.1115/1.1748341 XXXX R R? R XXELXTX R?

zz

(NyxgW )9 (NygW o) « (Nggv) o (Nygv) «
* R R TR TR

Introduction =0 1)

Shell-like structures are very sensitive to initial geometry im-
perfections. One of the main goals, in this field, is to find thd
various parameters that influence the shell’s sensitivity, thereby

ith the following boundary conditions:

improving the behavior of the whole structure. U or Ny

In the present note the characteristic behavior of the imperfec-
tion sensitivity is investigated on the aid of Koiter’'s asymptotic My
theory, [1]. Koiter showed that the imperfection sensitivity of a v or Ny,+ 5?

structure is related to its initial post-buckling behavior, In other

words, it is governed by the immediate slope at the bifurcation

point: if the latter is negative, the real buckling load will be less W of Mow o+ 2MX,,,9+N T

than the theoretical one and the shell is sensitive. Accordingly, X O

fewer parameters are needed for characterizing the sensitivity be-

havior. e . . . . W,y or Mxx (2)
Here, the sensitivity curves of an isotropic and laminated cylin- '

drical shell are studied in terms of the circumferential wave numny;

ber (CWN). It was found,[2,3], that discontinuities always occur 5=0 for Donnell's kinematic relations

at points where the CWN is changed, and in the present note th%sgl for Sanders’ kinematic relations.

points are sought. ¢ is a correction factor for the second theor§=(1) in the

Comibuted by the Anplied Mechanics Division OfE A . hydrostatic load cas¢7,8]: {=0 when the load remains parallel
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ; ;i — ;

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- to its original, and¢ 1 when t.he load remains normal to th.e
CHANICS. Manuscript received by the ASME Applied Mechanics Division, AugusfjeﬂeCted reference axis. The difference between the two versions

12, 2002; final revision, October 25, 2003. Associate Editor: T. E. Triantifyllides. iS most pronounced for thin rings.
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418 / Vol. 71, MAY 2004 Copyright © 2004 by ASME Transactions of the ASME



: Sa.r;lders’ :the(:nfy;'

Sensitivity b parameter

: ()*eircumferential wave nuinber
A e S

10! 10? I 10 10*
—E 1-v

Fig. 1 Sensitivity b parameter versus Batdorf Z-parameter for

simply supported (N,,=N,,=0) cylindrical shell under hydro-

static pressure

Initial Post-buckling

The imperfection sensitivity parameters determine whether t — |
load increases or decreases after buckling. Accordingly, the d Z 1400
placement, strain and stress vectors are expanded according tc =

following scheme:

u 4 e el
vi=N v @+ oW e 0@ (@)
W W w® w@

. L . 6
The load parametex representing the deviation from the classica .
buckling load\., and ¢ being the perturbation parameter. The
superscripts?, (M and® denote the prebuckling, buckling, and

initial post-buckling states, respectively.

Applying the variational principle following Budiansky and

Hutchinson[9,10], the load parameter is obtained as

er
P [20=0, Donnell]
“r

or

-0.041

-0.08

Sensitivity b parameter

Fig. 2 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported (Ny,=v=0) cylindrical
shell with I/R=3
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Fig. 3 Hydrostatic buckling load and sensitivity b parameter
versus angle ply for simply supported (N,,=v=0) cylindrical
shell with [/R=10
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ber versus angle ply for simply supported (v=0) cylindrical

shell with I/R=3 (b) Sensitivity a and b parameters versus
angle ply for simply supported (v=0) cylindrical shell with
IIR=3
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Y parametefEq. 6 as well. It is worth noting that in this example
o 1+aé+be+--- (4) Donnell's and Sanders’ theories yield the same values.
¢ In the second caséaminated cylindrical shellthe buckling

load and the b are plotted against the angle{glyy) in Figs. 2

where a and b are known as the Koiter parameters. For isotrogied 3 forl/R=3 and 10, respectively. It is seen that both of them
cylindrical shells the coefficient a vanishes due to the periodicitikewise highly dependent on the CWN, and the b parameter ac-
of the buckling mode in the circumferential direction, but for &luires a discontinuity as in the first case. It is found that the initial
laminated cylindrical shell under axial compression it was foungircumferential internal force, )y affects it most.

that it does not. As for the coefficieb a positive value indicates ~ Furthermore, it is seen that the buckling load and the sensitivity
that the shell is insensitive, a negative value measures the levePé# also highly dependent on the angle ply. Regarding the sensi-

sensitivity. For the linear prebuckling state Budiansky and Hutchvity level, it is seen that the angle ply has the same effect as a
inson derived the well-known formulas: stringer, namely, as it increases so does the buckling load while

the sensitivity decreases.
The different between Sanders’ and Donnell's shell theories is

30-Lo(uy) insignificant for buckling load but still Sanders’ yield lower val-
a= 55 oo Lo(Uy) (®)  ues, and quite pronounced for the b parameter; the more accurate
¢ the theory(Sandery the lower the sensitivity and the buckling
load.
b 05 Lo(Ug)+207-Lig(Uq,Up) (6) Axial Compression. The axial buckling loadapplied by set-

Neoo-Lo(Uy) ting Ny,=N,, at one edgg the CWN, the a and b parameters are
plotted againset the angle ply-«) in Fig. 4 according to Don-
. . . I's theory. Here, again, the discontinuities occur at points where
In terms of the displacement components the operator is wrltten%eé CWN changes, both in the b parameter and in the slope of the
buckling-load curve(at + a=62° the transition is most pro-
brex( Twhw® nounced, from CWN-1 to CWN=7).
oi-Liy(y, :Uk):f f {Ng(')z[w(i)w(f)]-ngg{'a—z’ﬁ Unlike its isotropic counter part, for the laminated cylindrical
aJo o R shell the a parameter does not necessarily vanish: for EWN
(axisymmetric buckling modethe sensitivity is characterized by
_ ﬁ(v(j)w(k)Jrv(k)W(j)) the asymmetric a parameter and while for CWN it is charac-
R? 0 0 terized by the b parameter.

Wil W) s

rangy TR TR (0

Conclusions
+u<k}Wf)j())Hd0dX ij,k From the results the following conclusions can be drawn:

« Discontinuities in the b parameter always occur at points
=0,1,2 @) where the critical circumferential wave number changes.
* Where the sensitivity a parameter is not zero, the sensitivity b
o parameter vanishes, and vice versa.
The superscripté§), (j), and(k) denote the relevant state as above. . Tpe angle ply has, in some cases, the same effect as a stringer
These equations are solved through expansion of the dependent configuration: as it increases does the buckling load, while
variables in Fourier series in the circumferential direction and in e sensitivity decreases.
finite differences in the axial direction. Afterwards the Galerkin
procedure is used to minimize the error due to the truncated form
of the series.
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A Combined Fourier Series-Galerkin assumed to vary through the thickness in an exponential fashion,

. e.g., E(z2)=Eqe*% The material was assumed to be isotropic at
Method for the Ana|y5|5 of every point and the Poisson’s ratio was assumed to be constant

Functionally Graded Beams everywhere. This assumption enabled them to obtain analytical

solutions using Fourier expansion methods. However, in practice
the properties of FGM will vary in an arbitrary fashion and the
H. Zhu aforementioned solution technique may not be useful. In the
present paper we assume that the property variation through the
Graduate Student thickness can be expressed in the form of a polynomial inzthe
coordinate. We demonstrate the application of both Fourier series

B. V. Sankar and Galerkin methods for obtaining an approximate solution for
Professor, displacements and stresses in a FG beam. The solutions are com-
Fellow ASME pared with available exact solutions and the agreement is found to

be very good.

Department of Mechanical and Aerospace Engineering,
University of Florida, Gainesville, FL 32611-6250
Analysis

Consider a functionally grade@=G) beam of heighth and
The method of Fourier analysis is combined with the GalerkilengthL as shown in Fig. 1. The beam and the loading are sym-
method for solving the two-dimensional elasticity equations for metric about the center line=L/2. The beam is assumed to be in
functionally graded beam subjected to transverse loads. Thestate of plane strain normal to thkez plane.
variation of the Young's modulus through the thickness is given byThe transverse loa@,(x) acting on the beam can be repre-
a polynomial in the thickness coordinate and the Poisson’s ratio &nted by a Fourier series as
assumed to be constant. The Fourier series method is used to )
reduce the partial differential equations to a pair of ordinary dif- 024%,0)= = PA(X)=—pp Sinéx (1)
fsrential equations, which are solved using the Galerkin me_tho\(;é,.nelre ¢=nm/L, n=1,35... and Fourier coefficients, are

esults for bending stresses and transverse shear stresses in :@pén by

ous beams show excellent agreement with available exact sofu-
tions. The method will be useful in analyzing functionally graded 2 (L
structures  with  arbitrary  variation  of  properties. pn:EJ’ pL(X)sinéxdx. (1b)
[DOI: 10.1115/1.1751184 0

We will demonstrate the solution method for the lgagsin éx in
this note. Then the traction boundary condition on the bottom

Introduction surface of the beam is given by

Functionally graded materialéGMs) possess properties that 0,4X,00=—ppsinéx, 7,,=0. (Ic)

vary gradually with location within the material. FGMs d'ﬁer.Sincen is odd, the load is also symmetric about the centerline.

er?irfr:) rﬁ%?gj'tﬁzgg?ﬁéeégngh%;ﬂur_?ﬁef::"’l‘ggggt gfng;s 'iggllé?'gg@he boundary conditions are similar to that of a simply supported

. g . P ' 091€S ¢ 8am, but the actual boundary conditions will become clear later.
are laminated composites, but the latter possess distinct mterfacegVe assume that the FGM s isotropic at every point and the
across which properties change abruptly. Suresh and Mortenﬁﬂsson’s ratio is a constant through the thickness. The variation

[1] provide an excellent introduction to the fundamentals o , . : S I
FGMs. As the use of FGMs increases, for example, in aerospaéf Young’s modulusE in the thickness direction is given by a

automotive, and biomedical applications, new methodologies ha@%lynomlal nzas
to be developed to characterize FGMs, and also to design and 3

analyze structural components made of these materials. For ex- E(z2)=E, h n n ) (2)
ample, Pindera and Dur2] developed a higher order microme-

chanical theory for FGM$HOTFGM) that explicitly couples the whereE, is the Young’s modulus at=0, anda;, a,, az, anda,
local and global effects. Delale and Erdod&hderived the crack- are material constants.

tip stress fields for an inhomogeneous cracked body with constantrhe differential equations of equilibrium are

Poisson ratio and with a shear modulus variation givenuby

2
+a4

4 4

a;t+a, +az

= ol *A In general the analytical methods should be such ‘7Uxx+ ‘9sz:0

that they can be incorporated into available methods with the least X Jz

amount of modifications, if any. One such problem is that of re- @)
sponse of FGMs to thermomechanical loads. Although FGMs are 0Ty, 007,

highly heterogeneous, it will be useful to idealize them as con- oX 0z =0.

tinua with properties changing smoothly with respect to the spatial ) o o o )
coordinates. This will enable obtaining closed-form solutions #ssuming that the principal material directions coincide withxthe
some fundamental solid mechanics problems, and also will help@fdz-axes, the constitutive equations are

developing finite element models of the structures made of FGMs.

In a series of papers Sankar and his co-worKdrs,7|, reported Oxx Cu Ciz 0 Exx
analytical methods for the thermomechanical and contact analysis Oz2( =|Ciz3 Czz O €22 4)
of FGM beams and also for sandwich beams with FG cores. In Tuz 0 0 ¢ Yz
these studies the thermomechanical properties of the FGM were 55
or
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- o=Ce.
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3}

Substituting the approximate solution in the governing differential
L equations, we obtain the residuals. The residuals are minimized by
> equating their weighted averages to zero:

AT

h
= %, f (éS+T,) ¢i(2)dz=0, i=1,4
| ; ’ 0 (13)

h
f (S,—T,6)¢i(z)dz=0, i=1,4.
0

PAx)
Using integration by parts we can rewrite E¢3) as
Fig. 1 A FGM beam subjected to symmetric transverse load-

! h h
e f $1£SdZ+T,(h) (1) = T,(0) (0) - f T,${dz=0
0 0
i=1,4 (14)
1 — V13 O h h
E. &, JOsz¢i’dz+foTzfasidz—<sz<h>¢i<h>—sz<0>¢i<0>>:o
- 1
ci=| B = o |, ) i=1,4.
Ell E33 . . .
1 Substituting forS,(z), S,(z), andT,(z) from Egs.(9) into (14)
0 0 = and using the approximate solution 1d(z) andW(z) in (11) we
Gis obtain
We assume the solution for displacements as Kfjl) Ki(1.2> (b) (fgl)
I
= 3 4) = _(2)) (15)
u(x,z)=U(z)coséx ©) Kfj) Ki(j c fi
W(X,z) =W(z)sin&x where
Substituting Eq(6) into (4), we obtain h , h ,
K§ﬁ>=§f c13¢i¢jdz—ff G| ¢ydz
Oy Ciy Ci3 O —&U sinéx 0 0
0, =| €13 C33 O W’ sin éx ) 2 oo " h
Taz 0 0 o/ \(U'+EW)cosex Kij :—fquﬁi pjdz—¢ focuqﬁidndz
The prime(’) after a variable denotes differentiation with respect h h
to z With Egs.(6) and(7), one can state that the boundary con- Ki<j3): _§2J G¢i¢jd2—j Cazdp! ¢j’dz
ditions of the beam at=0 andx=L arew(0,z)=w(L,z)=0 and 0 0
04x(0,2)=0,(L,2z)=0, which corresponds to simply support h h
conditions in the context of beam theory. Equatidis can be K_(_“):gf C13¢/¢_dz_§f Gl dz (16)
written as . o o )
( “xx):(z)smgx H1= 4(0)T,(0)~ () T(h)
g
- ®) 121~ ,(0)S,(0) — (1) S,(h)
Tyz= I, COSEX .
b
where (C) :(bl b2 b3 b4 Cl C2 03 C4).
(Sx) _ REERE (*fu) Traction boundary conditions on the top and bottom surfaces of
S;) \cig cggfl W © beam are
T,=G(U’"+£W). 7 /(%,0)=0
Substituting forayy, o,,, 7y, from Egs.(7) into equilibrium Egs. T(X,h)=0 17
(3), we obtain a set of ordinary differential equationdJz) and i 17)
W(2): 024X%,0)= = py Sinéx
£5+T,=0 10 o,4x,h)=0.
S-T,é=0 (10) In terms ofS, andT,, the boundary conditions take the form
VA - .
In order to solve Eqs(10) we employ the Galerkin method. We T(0)=T,(h)=0
assume solutions of the form S,(0)=—p, (18)
U(z)=C1$1(2) + C26p2(2) + C3p3(2) + Cap4(2) (11) S,(h)=0.
W(2) =b161(2) +br¢a(2) + b3p3(2) +bspa(2) Equations(18) can be used to evaluate” andf(® in (16) which

where ¢, are basis functions, arfdl andc, are coefficients to be @re the right-nand side of EQLS). Solving Eq.(15), we obtain the
determined. For simplicity we choose 4,22, 2% as basis func- solutions for the coefficients; andc;, which yield the approxi-
tions. That is mate solutions folJ(z) andW(z) in (11). OnceU(z) andW(z)

' ' are determined, stress at any point can be computed using&gs.

$1(2)=1; ¢(2)=2;, ¢3(2)=2% a(2)=2% (12) and(9).
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Table 1 The coefficients of the cubic polynomial for E(2). E; that smaller values ofh represent slender beams or beams sub-
=10 GPa and beam thickness h=10 mm. jected to more uniformly distributed loads, whereas larger values
of ¢h indicate short stubby beams or beams subjected to concen-
trated loads. From Figs. 2 and 3 it can be noted that the results of
10 1 2.9577 —0.7889 6.7982  the Galerkin method agree very well with the exact solutfdn,

01 1 —2.1845 1.9844 —0.6996  The difference of two solutions is imperceptible. The normalized
stresses are less than 1 when the loads are applied to the softer
face (Fig. 2, E;,/Eq=10). On the other hand, the normalized
) ) stresses are much greater than 1 when the loads are applied to the
Results and Discussion harder facgFig. 3, E,/E,=0.1). One can also note the approxi-

In order to verify the present method examples frfith are Mate location of the neutral axis for the two beams in these fig-

used. In these examples the variation of Young’s modulus is a4€s- o
sumed to be of the forrE=E,e*?". The same variation can be The transverse _shear stresses are plot;ed in Figs. {1_and 5. The
approximated by the polynomial form given in B&). The coef- approximate solution also agrees well with exact solitions. The
ficients of the polynomiala, , . . .a, were determined by using shear stresses attain the maximum value at the neutral axis. The
the least squares curve fitting. Two types of beams were COnslmn_rmallzed maximum shear stress values are above the conven-
ered, and the variation of Young’s modulus in these beams gfgnal 1.5, when the loads are applied on the harder surface of the
given by E,/Eo=10 andE,/E,=0.1, respectively. In the first beam(Flg. 5), but fall be_Iovv_ 1.5, in some cases when the loads
beam the load is applied on the softer face of the beam and in i€ applied to the soft sid&ig. 4). _
second on the harder side. In both caEgswvas taken as 1 GPa The present_method can be applied to_functlonally graded struc-
and v=0.25. The thickness of the beamkis= 10 mm. The coef- tures with arbitrary variation of properties and also can be ex-
ficients of the cubic polynomial foE(z) are given in Table 1. tended to platelike structures and sandwich construction wherein

The results for the normalized bending stress for various valull core material and/or the face sheets are functionally graded.
of ¢th=n=/L are presented in Figs. 2 and 3. It should be noted

En/Eq a, a, as ay

1 14
0.9} — 0.9+ 4
081 i 08r Exact solution 1
Exact Solution i o7y +——+ Galerkin method |
+———+ Galerkinmethod ] 06r E,/E,=10 / ‘\ ]
E/E=10 1 %05 Eh=3 gh=1
Eh=2
4 0.4}
g 0.3+ 1
4 0.2+ J
g 0.1 1
05 1 o 02 04 06 08 1 1.2 1.4 1.6 1.8
0,2V, (x.h) T Txz{average)
Fig. 2 Normalized axial stress o, through the thickness of Fig. 4 Transverse shear stress through the thickness of FGM
FGM beam for E,=10 E,. The exact solution and that of Galer- beam for E,=10E,. The exact solution and that of Galerkin
kin method are indistinguishable. method are indistinguishable.
1 : 1 -
0.9+ b 0.9+ 7
0.8 _ Exact solution ] 0.8f B
o7y +——+  Galerkin method A o7r 7]
08¢ E,/Eq=0.1 ] 06f . 7
— . Exact solution
g o5 1 $ o5¢ 1
0.4} J 04l  +—* Galerkin method Eh=3 |
E /E,=0.1
0.3r E 0.3} W0 §h=1\~ ,/ _
02F Eh=3 - o2} &h=2 i
01 B 0.1k 4
—l -
-10 -8 Te 4 2 0 2 % 02 02 06 08 1 12 14 16 18 2
0, x.2)o,, xh) Ty Txz(average)
Fig. 3 Normalized axial stress o, through the thickness of Fig. 5 Transverse shear stress through the thickness of FGM
FGM beam for E,=0.1 E,. The exact solution and that of Galer- beam for E,=0.1 E,. The exact solution and that of Galerkin
kin method are indistinguishable. method are indistinguishable.
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Dead-Load Conditions
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dx, )

Now, if the beam’s material is randonk is a random field
parametrized by, which we can write as a sum of a constant

Fracture of Brittle Microbeams mean(E) and a zero-mean fluctuatid®' (x)

E(w,X)=(E)+E'(0,X) wel}, ()]
M. Ostoja-Starzewski where ) is a sample space. Tak€ (x,w) as a wide-sense sta-
Department of Mechanical Engineering, McGill tionary random field. A random material is thus defined as an

University, 817 Sherbrooke Street West Montreal, ensemble5={B(w);w = 0} ={E(w,X);wcQ,x[0a]}. Here,
PQ H3A 2K6, Canada and in the foIonvmg, we explicitly show the dependen_ce @n

. . . . whenever we wish to indicate the random nature of a given quan-
e-mail: martin.ostoja@mcgill.ca tity prior to ensemble averaging.

Fellow ASME On the physical side, the need to consider randomneds of
arises when the representative volume elem&WJE) of con-
tinuum mechanics cannot be safely applied to the actual beam.

The random polycrystalline microstructure of microbeams nece’g‘-mong others, problems of th|§ type are driven by the challepges

sitates a reexamination of the crack driving force G stemmir:y_‘ micro a;:r?d qanortlechnology, 323" e.g5,6])_. SUCtT].a t‘;]aiet's

from the Griffith fracture criterion. It is found that, in the case of tg\l’lgll I(;]imlegr;si(’)r:lt—eireea fr?:?/er |c(r)c;]eeear2|f?nisno |t|2 Ygurlls’s
dead-load conditions, G computed by straightforward averagirﬁ dulus—beains t b )tl)l to th gt | gl él'hg

of the spatially random elastic modulus E is lower than that oh- odulus bl egins Ot _edcompgrg be o the cr()j/;: Zd the

tained by correct ensemble averaging of the stored elastic ener .IrEn.patrabe aslpecdlz esctrlt.et. Iy al mesosl éVaEn Th N

This result holds for both Euler-Bernoulli and Timoshenko models'.— 'S 10 P€ répiaced by a statistical volume € en ). The

of micro-beams. However, under fixed-grip conditions G is to ite-size scaling laws of the SVE—i.e., its approach to the RVE

computed by a direct ensemble averaging of E. It turns out th\gfth fL{Id—mf—were r(;cently reviewed '[17.]' | h that. f

these two cases provide bounds on G under mixed loading. Fur-It ollows from (1).t a_tU is a random integral, such that, for

thermore, crack stability is shown to involve a stochastic compgfjlCh and every realizatian< (3, we should consider

tition between potential and surface energies, whose weak ran-

domness leads to a relatively stronger randomness of the critical

crack length. [DOI: 10.1115/1.1651091

Background

According to Griffith’'s theory[1], of elastic-brittle solids, the
strain energy release ra@&is given by

WV _
A oA

where A is the crack surface area formed] is the work per-
formed by the applied load$l is the elastic strain energy, and

is the energy required to form a unit of new material surfacg.,

[2]). The material parameteris conventionally taken as constant,
but, given the presence of a randomly microheterogeneous maté
rial structure, its random field nature is sometimes considered €
plicitly (e.g.,[3,4]). If one recognizes, however, that the randomn
material structure also affects the elastic moduli, the computatic a

P

2y (1)

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i X X
MECHANICAL ENGINEERSTor publication in the ASME OURNAL OF APPLIEDME-  Fig. 1 Fracture of a microbeam of thickness L off a substrate.
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 16A statistical volume element  (SVE) imposed by the random mi-
2002; final revision, Aug. 1, 2003. Associate Editor: M.-J. Pindera. croheterogeneous structure characterized by scale d is shown.
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a M2dx U*(a,(E))|a=0=0 U*(a(E" 1 1],_0=0, 16

U(a,E(w))=f ) (5) ( < >)‘a 0 ( < ) )|a 0 ( )
0 21E(w,X) and the definitions

Upon ensemble averaging, this leads to an average ener JU(a,(E JU(a(E"H 1

p ging g gy G (a(EY) = (a,(E)) G*(a(E Y )= (afE"") |
a M2dx Boa Boa
(U(a,E))=<Lm>- (6) 17)
yields

In the conventional formulation of deterministic fracture me- G*(a,(E))=G*(a(E"H 1. (18)

chanics, random microscale heterogeneiti€¢x,w) are disre- . . . . . .
garded, and5) is evaluated by simply replacing the denominatof"_r:lcel%(a'<E>)—G (a,(E)) in a linear elastic material, we ob-
by (E), so that al

aM2dx Inequality (12) shows thatG computed under the assumption
U(a,(E>)=f — (7) that the random material is directly replaced by a homogeneous
0 2I(E) material E(x,w)=(E)), is lower thanG computed withE taken

. . . explicitly as a spatially varying material property. Clearly,

Clearly, this amounts to postulating that the response of an |de€é(a£)> is the correct quantity to be used under dead loading.

ized homogeneous material is equal to that of a random one on

average. Therefore, we are interested in making a statement abolRemark 1. With the beam thickness increasing, the mesos-

(U(a,E)) versusU(a,(E)), and aboutG(E)) versusG((E)).  caleL/d grows, so thaE’'—0. Thus,(E"%)"1—(E), and(12)
First, note that, since the random proc&se positive-valued turns into an equality, whereby the deterministic fracture mechan-

almost surely(i.e., with probability ong Jensen’s inequality8], ics is recovered.

yields an inequality between harmonic and arithmetic averages of

the random variabl&(w) Remark 2. These results carry over to a Timoshenko beam.
1 . In that case, strain energy is defined by
=l (8) am? a v?
(E) <E> U(a)=f —dx+f ——dx, (19)
0 2IE 0 2Au

whereby thex-dependence is immaterial in view of the assumed
wide-sense stationarity of fielH. With (6) and (7), this implies whereV is shear forceA is beam’s moment of inertia, and is

that shear modulus. The random material is now defined as a vector
aM?dx  (aM?/1 random field3={C(w,X);we Q,xe[0,a]}, where the stiffness
U(a,(E))= Omg V2T \E dx C=[E, u]. With the strain energy release rate defined 3y we
now derive
- a—Mde =(U(a,E)) ) G(a,(E).(u))<(G(a,E,n))=G*(a(E" ") " (™ H™h).
0 21E(w,x) o (20)

since the conditions required by Fubini’s theordsi, are met. ~ 1he equality in (20) follows from the random Legendre

Now, if we define the strain energy release i@, (E)) in a transformation.
hypothetical material specified B¥E), and the strain energy re-
lease rate/G(a,E)) properly ensemble averaged in the randorF—'ixed-Gri Conditions
materia{ E(w,X);w e Q,xe[0,a]} P
In this case the displacement is constaw., nonrandory and

dU(a,(E)) HU(a,E)) i i i
G(a,(E))= (G(a,E))= (10) the load is random. Now, only the first term (i) remains so that

Boa Boa ’ JU%(a)
and note that the side condition is the same in both cases =" "Boa - (21)
U(a,(E))|a=0=0 (U(a,E))|a=0=0, (11)  suppose now that there is loading by a foRat the tip, so that
we obtain we have I
G(a,(E))<(G(a,E)). (12) __ur
G 2B gda’ (22)

This provides a formula for the ensemble aver&ander dead-
load conditions using deterministic fracture mechanics for EuleTake now a cantilever beam problem implyirR=3uEl/a®.

Bernoulli beams made of random materials. Then, we find
Another derivation of this is obtained by first introducing a
complementary energy through an application ohadom Leg- (G)=— u faP\ U A(P) 9u?I(E) 23)
endre transformation[9], ~ 2B\da/ 2B da  2Ba* |
U*(a,E(w))=M-6-U(a,E(»)) we, (13)  since the load—be it a force and/or a moment—is always propor-
where ¢ is the angle of twist conjugate #d, such that tional to E, this indicates thaG can be computed by a direct

ensemble averaging d& under fixed-grip loading, and, indeed,
the same conclusion carries over to Timoshenko beams.

AE(w)
U*(a,E(w))= 3 6%dx. (14)
0
It then follows from(8) that Mixed-Loading Conditions
2| (E(w)) A (E" Y w)) L In general, both load and displacement vary during crack
U*(a,(E(w)))= f — azdxaf — 6%dx growth, and there is no explicit relation between the crack driving
0 0 force and the change in elastic strain energy. However, we can
ok -1 -1 bound G under mixed loading Gixed by G under dead load
=U* (@B () ), (15) (Gp) andG under fixed grip G,), providing we note the follow-
which, with the side condition ing facts:
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(i) Observe that Gp=(G(a,E)), while G,=G(a(E)). }
Clearly, in view of(18), the ensemble averages satisfy

G,<Gp. (24) (I) = 2a(y)

(i) Any (dP,du) change in theP, u-plane, corresponding to
Gixeq due to an extension of the crack dy, may be split into
two parts: (Odu) and dP,0). The first part, involving an exten-
sion of the crack by da);, is computed asGp=(G(a
+(da),,E)). The second part, involving an extension of the

crack by da),, is computed a&,=G(a+(da),,(E)). (ID) + (T
(iii) Observe that
Ghixed@t+da)=G,(a+(da),)+Gp(a+(da);)<Gp(at+da) -
(25) a

becauses(a+(da),)<Gp(a+(da),) by (24), while
Gmixed @+ da)=Gy(a+(da);) +Gp(a+(da),)=G,(a+da) a (E(w))
2

(26) _
becauseGp(a+ (da);)=G,(a+(da),) again by(24). (ID = I((1/E))

It follows that G,,ixeq due toda=(da), +(da), is bounded by
the G's computed under dead-load and fixed-grip conditions, fror
above and below, respectively:

Fig. 2 Potential ener II({1/E)) (thick line ) and its scatter
Gu=Crmixed=Gp- 27) sh%wn by a parabolic V\?gdge (((thinqin(es ), sumn)1ed with the sur-
Note that, interestingly, in mechanics of random media, thHeace energy (I')=2a(y) (thick line ) and its scatter shown by a
energy-type inequalites are usually ordered in an inverse fashistiaight wedge (thin lines ), results in II({1/E))+(T") (thick line )
kinematic (resp. forcg conditions provide uppefresp. lowey and having scatter shown by a wider parabolic wedge (thin
bounds. lines). Dashed region indicates the range of a critical crack
Moving on to the case of Timoshenko beam loaded at the tij§"9th ac(E(®)), a random variable.
we have four particular possibilities:
(i) PandM fixed: Gp_ ,
(if) P and @ fixed: Gp_g, ) ) )
(i) uandM fixed: G,_y, Next, if we take, in analogy t64), the surface energy density as
(iv) uand @ fixed: G,_,, a random field made up of a constant méghand a zero-mean
wherein Gp_, and G,_,, are G's under mixed conditions. fluctuationy’(x)

Now, in place of(24) we have YoX)=(n+7(0X) we, (32)

Gu-g=<CBp-¢=<Cp-m Gy-p=<Cu-w=<CGp-m. (28) then the surface enerdy(w) =2a[(y)+ y'(w)]. Thus, using two
. - straight lines, we indicate scatter abo{f)=2a(y). Conse-
Stochastic Crack Stability quently, the scatter about the meanfﬁfﬁ%(w) i<s I>arger than
Recalling the fracture criteriofil), we observe that cracking that of IT(w) or I'(w) alone, and at the maximum of their sum we
along thex axis is governed by an interplay of two random fieldhave a stochastic competition between both contributions. Evi-
(parametrized by): the elastic propert§ and the surface energy dently, according td29), the critical crack lengtla, becomes a
density y. In view of the scaling arguments concerning the SVisandom variable—i.e.a.(E(w))—and we show its range by a
versus the RVE in the paragraph following Ed), the first one is dashed region in Fig. 2. In view dB0), there is an inequality
a function of the beam thickneds but the second one is not. between the average. properly calculated frombl((1/E))
Thus, for statistically stationary and ergodic materials, the ran-
domness of decreases to zero as the mesostatk—, but the FPLI((1EY) +(T')]

—0=a(LE))=(a,(E))  (33)

randomness oy remains constant. To sum up, cracking of micro- 922
beams is more sensitive to the material randomness of elastic
moduli than cracking of, say, large plates. and the deterministie. simplistically calculated fromI((E)) is
Crack stability in any particular micro-beatwe (), in a gen- 5
eral loading situation, is governed by the condition of the same ITIL(E)) +(I')] —0=a,((E)) (34)
form as that in deterministic fracture mechanic, ga? ¢ '
<0: unstable equilibrium The said inequality is
P (w)+T()) " uatly
T =0: neutral equilibrium (29) a.((LE))<a.((E)). (35)
>0:  stable equilibrium. Note that the equalitg((1/E))=(a.(E)) in (33) follows from

Here both, the total potential ener§ii{w) and the surface energy (31). Finally, Fig. 2 shows that small random fluctuationgsiand
I'(w) are random. Now, under dead-load conditions, the correctly (i.e., scatter about the maximum ®F((1/E))+(T')) lead to
averagedII) (shown by a solid lingis bounded from above by relatively much stronge!) fluctuations ina, .

the deterministidI estimated by a straightforward averagingeof

H((1E)) =(I)<II((E)). (30)
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25-35. 2 Solution
Consider a circular disk of outer radilisand inner radiusa

Elastic-Plastic Stress Distribution in a rotating with an angular velocity about its axis. The thickness of

H ; ; H the disk is assumed to be small such that the plane state of stress
Pl_astlcally AnISOtrOpIC ROtatmg can be adopted. In a cylindrical coordinate systefa with its
Disk z-axis coinciding with the axis of rotation, there are only two

nonzero components of the stress tensgrand o,. The elastic
properties of the material are assumed to be isotropic, and the

N. Alexandrova elastic portion of the strain tensor obeys Hooke’s law. In the cy-
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3810-193 Aveiro, Portugal (G+H)o?—2Ho 04+ (H+F)o2=1 1)

e-mail: nalexandrova@civil.ua.pt whereG, H, F are constants which characterize the current state

of material anisotropy. It is convenient to rewrite) as
S. Alexandrov

Institute for Problems in Mechanics, Russian Academy of o7+ P 10ePy= 0 @
Sciences, 101-1 Prospect Vernadskogo, p=2HI(GFH)(HTF), m=GTH/VHTE,
119526 Moscow, Russia

e-mail: sergei_alexandrov@yahoo.com o0o=1(G+H), p;=o4/n;. 3

The only nontrivial equation of motion is

. . . . . . Jdoy 00y 2
The plane state of stress in an elastic-plastic rotating anisotropic (9_+ =—pwr, (4)
annular disk is studied. To incorporate the effect of anisotropy on r r
the plastic flow, Hill's quadratic orthotropic yield criterion and its wherep the density of the material. The boundary conditions are
associated flow rule are adopted. A semi-analytical solution is B B B
obtained. The solution is illustrated by numerical calculations o,=0 atr=a and r=b. ®)
showing various aspects of the influence of plastic anisotropy onat small » the entire disk is elastic. Since the elastic properties

the stress distribution in the rotating disk. are assumed to be isotropic, the general solution for stresses is
[DOI: 10.1115/1.1751183 well known (see, for exampl€g9]). Using (5) the distribution of
stresses can be found in the following form:
1 Introduction 3+v [ , ., ah®
The dependence of stress distribution on the angular velocity in o =g pwt|att b*— 2 -
rotating disks is of significant importance due to a large number of (6)
applications. The majority of the work in this area is based on the 3+ a2h? 1+3vp
assumption that the material is isotropic and obeys Tresca yield T=—g pw?| @%+b?+ ——— 37 ré
criterion with its associated flow rulesee[1] and a review in this r v

papey. A comparison of the solutions for elastic-plastic rotatingyhere v is Poisson’s ratio. Assume that yielding begins at the
solid and annular disks based on Tresca and Mises yield critefiger radius of the diskit will be verified a posterioji Then,
was given in[_2]. In particular, the difference in stress distributionysing(3) and taking into account that,>0, the angular velocity
calculated with those two criteria was discussed. The effect gf the initial yielding,w,, is obtained by substitution &B) into
yield criteria on the stress distribution and limit angular velocity)

of a rotating disk with variable thickness was also investigated in pw2b? 4y
[3]. In [4,5], the influence of temperature fields on the develop- ¢ - 1 . (7
ment of plastic zones in nonrotating thin disks was demonstrated. o0 (3+w)+(1-v)(a¥b?)

In particular, it appeared that the rise in temperature at which thelf  is higher thanw,, a plastic zone appears in the disk. The
X . : e .
entire plate became plastic was very small for various plate &g iar velocity at which the entire disk becomes plastic will be
Comtibuted by the Abplied Mechanics Division ofiE A . denoted byw, . In the rangew.<w<w, the disk consists of an
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF  ; : ; +
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- inner plastic zone surrounded by an outer elastic zone. To find the

CHANICS. Manuscript received by the ASME Applied Mechanics Division, JanuarQiStribUtion of stre_sses in t_he pla_stic Zone, i_t_iS convenient to in-
3, 2003, final revision, October 17, 2003. Associate Editor: M.-J. Pindera. troduce the following nondimensional quantities:
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(=,

+ 2

1 2 Cose, Y .
0.8 Z[3+V+’)/ (1*1/)]9— m 777]1+21_—’y2 +7713|ngo7
AAGOTE (14)
06 Steel DCO6 whereg , is the value ofp at =y and is a function ofy since the

solution to(10) gives ¢ as a function of3. Equation(14) should
be solved numerically to obtaipas a function of). Then,B can
be found as a function d? with the use of(13).

[sotropic material

0.4 AAS182

3 Numerical Results and Discussion

To illustrate the effect of plastic anisotropy on the development
of the plastic zone some numerical results are presented in this
section. In all cases;=1/3. The solution for the isotropic material

a is obtained as a particular case of the general solution found at
0.2 0.4 0.6 08 1 F=G=H. In Figs. 1-4, the corresponding calculations are illus-

. - . ) ) trated by dashed lines. Four sets of anisotropic coefficients are
Fig. 1 Variation of the nondimensional quantity (wp—wo) w, considered[10,11)):

0.2

with
7 F/(G+H)=0.243, H/(G+H)=0.703 for steel DCOS;
F/(G+H)=0.587,
Q=pw?b?o,, q=alb, B=rlb, y=clb 8) H/(G+H)=0.410 for aluminum alloy AA6016;
wherec is the radius of the elastic-plastic boundary. Equat®n F/(G+H)=0.498,
is satisfied automatically by the substitution H/(G+H)=0.419 for aluminum alloy AA5182;
o log=2 cosel\4—7?, pyloy=7ncose/A— n’+sine F/(G+H)=0.239,
©) H/(G+H)=0.301 for aluminum alloy AA3104.

whereg is a function of3. Substituting(9) into (4), with the use Note that the coefficients were measured for rolled sheets with
of (3), leads to the following ordinary differential equation for  straight principal axes of anisotropy. It is clear that the disk under

) consideration cannot be made of such sheets. However, for illus-
2sing deo 2F cose

VA= 4B\ (MR VA= "

) 1
1 Sing E—Qﬂ=0.
1y 7

The boundary condition to this equation follows frof®) at r
=a and(9) in the form

o=1l2 (112)

at B=q. The solution to(10) satisfying the boundary condition
(11) can be obtained numerically and givesas a function ofs.
This function is not monotonice attains its maximum at some
value of 8 and, then, decreases. If the entire disk is plastic, the,
¢o=ml2 at =1, as follows from(5) atr=b and(9). For a given
value of g, it is clear from (10) that ¢ depends or3 and (),
e=¢(B,Q2). Therefore, the solution to the equatiap(1,,)
=2, if it exists, gives the value of), corresponding tav, .
The variation of the nondimensional quantity(— w¢)/ we with g
is shown in Fig. 1.

Once the solution t¢10) has been found, the distribution ofjg 2 variation of the nondimensional radius of elastic-plastic
stresses in the plastic zones 8=y is given by(9) with the use boundary, 7, with Q at g=0.4
of (3). The general stress solution given [i8] is valid in the
elastic regiony<p<1. Using the boundary conditiofb) at r Ty
=b and notation(8) it may be rewritten as 0.3

0.8 Isotropic material AA3104

Steel DCO6

1.4 1.8 22 2.6

1 3+VQ )
Eil t (1-p9,

o B AA3104 AA3182

‘To_Uo
12) o2 e =

AAGOIG . .
— BZ Isotropic material

Oy B 1

7 oo\ g2
whereB is an arbitrary constant. For a given angular velocity iro.1
the rangew.<w<w, the magnitudes ofy and B can be deter-
mined from the condition of continuity of the stresses across tf

elastic-plastic boundary. AB=1, it follows from (3), (9), and
(12,

B 1
oo (1/y%-1)

1+3v ( 3+v

Lt Y1,

g9 Jo

Steel DC06

B

2 0.5 0.6 0.7 0.8 0.9 1

+VQ(1 2)
V=7 8 !

5 COS@,,— (13)

Fig. 3 Radial stress distribution at Q=1.85 and g=0.4
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trative purposes it is possible to use the aforementioned coefbalnt-Venant Decay Rates for the

cients for characterizing the level of anisotropy at each poi ;

Figure 2 shows the variation of the radius of elastic-plastic bour:EeCtangmar Cross Section Rod

ary, vy, with ) at q=0.4. Figures 3 and 4 illustrate typical radial

and circumferential stress distributions @t=1.85 andq=0.4,

respectively. N. G. Stephe_n . . . . .
There are two main conclusions to be made. First, the qualitgchool of Engineering Sciences, Mechanical Engineering,

tive behavior of all curves is the same for anisotropic and isotrdhe University of Southampton, Highfield,

pic materials: the increase in the angular velocity fropto w, is  Southampton SO17 1BJ, UK

relatively small(Fig. 1), and it tends to be smaller for the alumi-

num alloys of lower series. This is also illustrated in Fig. 2. Seq_-, J. Wang

ond, the anisotropic plastic properties have a significant effect gw h. | of Mechanical M ials M f .

the size of the plastic zone and the stress distributiBigs. 3 and ¢ _00 0_ echanical, Materials, Manu aC?U“”Q

4). Itis expected that this effect may have an influence on residlangineering and Management, The University of

stress distributions, fatigue crack growth and other properties. Nottingham, University Park, Nottingham NG7 2RD, UK
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Science and TechnologdiPortugal under grant SFRH/BPD/6549/ y4tion of Saint-Venant decay rates of self-equilibrated loading at
2001. one end of a semi-infinite prismatic elastic rod of general cross
Nomenclature section, which are the eigenvalues of a single repeating cell trans-
fer matrix, is applied to the case of a rectangular cross section.
First, a characteristic length of the rod is modelled within a finite
element code; a superelement stiffness matrix relating force and
displacement components at the master nodes at the ends of the
length is then constructed, and its manipulation provides the
transfer matrix, from which the eigenvalues and eigenvectors are
determined. Over the range from plane stress to plane strain,
Which are the extremes of aspect ratio, there are always eigen-
modes which decay slower than the generalized Papkovitch-Fadle
modes, the latter being largely insensitive to aspect ratio. For
compact cross sections, close to square, the slowest decay is for a
mode having a distribution of axial displacement reminiscent of
. that associated with warping during torsion; for less compact

¢ = function ofr cross sections, slowest decay is for a mode characterized by cross-
¢, = value ofp at f=y sectional bending, caused by self-equilibrated twisting moment.

) = nondimensional parameter [DOI: 10.1115/1.1687794
® = angular velocity U :

we = angular velocity at the initial yielding
w, = angular velocity at which the entire disk becomes 1
plastic

a, b = inner and outer radii of the disk, respectively
¢ = elastic-plastic boundary
po = modified tangential stress
g = ratio of the inner to outer radius of the disk

r6z = cylindrical coordinate system
B = nondimensional polar radius
v = nondimensional radius of the elastic-plastic bounda

n, 71 = plastic anisotropic parameters
v = Poisson’s ratio
p = density of the material
o, o0y = components of the stress tensor in the cylindrical
coordinate system

Introduction

For a one-dimensional, beam-like structure, Saint-Venant's
principle (SVP) allows one to replace a known load system on one
end by a statically equivalent load distributed in a particular way
Yemanded by the elastostatic solution, known as the relaxed end
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condition. Statically equivalent implies that the resultant force an y z
moment are unchanged; the difference between the two load d A /
tributions is termed self-equilibrating and since it has no resultal
force or couple that requires reaction at some other locations
the structure, there is no reason why the associated stress
strain field should penetrate any great distance into the structu
That is the self-equilibrating load should produce only a loce
effect, which decays as one moves away from the beam end. ¢
the other hand, more often than not, the exact distribution is n
known, only the magnitude of the end load; either way, SVP i
rarely invoked consciously, yet it underpins the day-to-day appl
cation of the discipline of strength of materials. 7~

Exact elasticity solutions for these end effects are availab 2a
when the rod has a mathematically amenable boundary, such as
the solid and hollow circular cross secti¢f,2]; however, for the Fig. 1 Semi-infinite elastic rod of rectangular cross section
important case of a rod of rectangular cross section, the wegkbject to self-equilibrated load on the end ~ z=0, and repeating
known Papkovitch-Fadl&-F) modes(see, for examplg3]), ap- cell of length /.
ply only to the extremes of aspect ratio which are plane strain and
plane stress, and are subject to their inherent stress and displace-
ment assumptions, while an antiplane solutigH, assumes infi-

nite width. ) i ) environment where the manipulations to form the transfer matrix
Toupin [5] provided the first proof of SVP in 1965, and thereynq getermination of the eigenvalues are readily accomplished.
has been extensive research since that time, with reviews haVK‘&:uracy of the method was established[8] by comparison
been provided by Horgan and Knowl¢§-8]. Toupin argued that \yith the decay rate predictions from a selection of the stock of
attempts to calculate decay rates are mmgrfsistent with the spirit exact elasticity solutions, and found to be excellent. The theory

of the principle, and the way it is used. After all, if one carhehing the method was described fully[Bi, and is not repeated
construct, or is willing to construct solutions, there is no need fofq e

the principle” A counter view is that a knowledge of the mini-
mum decay rate for a particular structure defines the extent of the
region where a calculated stress may be in error. In a recent paper,
[9], the present authors described a numerical procedure which _. . .
allowed [t)he determination of the Saint-Venant dgcay rates fo Finite Element Modelling of the Cell

semi-infinite elastic rod of arbitrary cross section subjected to Figure 1 shows a typical repeating cell of the rod having width
self-equilibrated loading at one end. This procedure is, in turn,2a, depth 2 and lengthl.. For numerical purposes we take
development of a transfer matrix meth¢dQ], in which the decay andl. as equal to unity, when the calculated decay rates, over the
rates and equivalent continuum beam properties of a repetitisange of aspect ratioa/b=1/20—40, are a multiple of the rod
pin-jointed framework, consisting of a series of identical cells, casemi-depttb. The modelling data are given in Table 1; in all cases
be calculated. Nodal displacements and forces on either side26fFnode isoperimetric elements were used and Poisson’s ratio was
the generic cell form state vectors which are related by meanstaken to be 0.25. The large dimension of the transfer matrix, for
a transfer matrix, the latter being determined from a knowledge ekample 57&576 in the case of the square cross section, in turn
the cell stiffness matrix; on account of translational symmetrigads to a large number of possible decay modes; 12 of the eigen-
consecutive state vectors are related by a constant mukijglee  values are equal to unity and these pertain to the six rigid body
decay factor, which leads directly to a standard eigenvalue pradisplacements, and the six transmission modes of tension, torsion,
lem. For the continuum elastic beam of arbitrary cross section, taed shear and bending in two planes. The remaining eigenvalues
beam is first regarded as a series of identical cells of a charactereur as reciprocal pair&he transfer matrix being sympleckic
istic length, related to some cross-sectional dimension; the stiffecording to whether decay is from left to right, or vice versa,
ness matrix of one such cell is constructed using a finite elememhich leads to the prediction of 282 distinct left to right decay
code, such as ANSYS. Since displacement and force componemtzdes. Of these, the most importdahd the most accuratare

are required only for master nodes at the ends of the cell, #llose which provide the slowe&patially) rates of decay; thus for
others are treated as slave nodes. This condensation creates ghgusquare cross section, only the first ten decay rates are pre-
perelement stiffness matrix, which is imported into a MATLABsented, allowing some classification into families of decay modes.

A 4
=

Table 1 Finite element modeling data of rectangular crosssection of characteristic length, Ie
Aspect ratio Division of Division of Number of Nodes in Size of transer
a/b 2aXx2b length, I . elements cross-section matrix
1/20 4x8 10 320 121 728726
1/10 48 10 320 121 728726
1/4 3%8 5 120 95 57570
1/2 3%x8 5 120 95 57&570
2/3 4X6 5 120 93 558558
4/5 4X6 5 120 93 55&558
1 5%5 5 125 96 57&576
5/4 6x4 5 120 93 55&558
3/2 6x4 5 120 93 558558
2 8x3 5 120 95 57570
4 8x3 5 120 95 57570
10 8x4 5 160 121 728726
20 8x4 5 160 121 728726
40 8x4 5 160 121 728726
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as those which provide the smallest decay rateafbr 4/5; thus
consider the dual relationship between the decay rates for the two
casesa/b=2/3 anda/b=23/2; physically the bars are identical,
the difference being an interchange of the coordinate axes and, by
/ implication, the dimensiona andb. The slowest decay rate for
a/b=2/3 is kb=2.0420, when stress decays as
exp(—2.042@&/b) =exp(—1.361%/a), which is the smallest de-
cay rate fora/b=3/2, albeit witha andb reversed; generalization
of this result is straightforward for other aspect ratios. For any

v particular aspect ratia/b<<1, a dual decay rate may be found by
( simply multiplying by the aspect ratio: thus an entry &olh=4
can be found from the decay rate fotb=1/4, and multiplying by
1/4; for example, 1.49961/4=0.3749. Indeed, in Table 2, with

the exception of those entries below the sympalvhich denotes
b that some decay rates have not been entered, every decay mode
for a/b<<1 has a dual foa/b>1 on the same row.

Compared to the general rectangle, which is symmetric about
the coordinate axes, the square cross section is, in addition, sym-
metric about the two diagonals; in turn the decay rates can occur
as single eigenvalues, or as pairs, according tddajsymmetry of
the displacement field. For the slowest bi-moment moklb (

. . =1.6639-0.5717) both the axial displacemem, and the cross-
3 Results and Discussion sectional displacements, andv, are symmetric with respect to

The slowest decay rate predictions are shown in Table 2, tiae diagonals, and asymmetric with respect toxlaady-axes; in
ascending magnitude of the real part which governs the rate asinsequence a single root, and a single eigenvédemay modg
decay; thus the first row pertains to self-equilibrated loading thatffices. On the other hand, repeated decay rates occur for sym-
will penetrate the greatest distance into the structure. Exact decagtric cross-sectional bending (2.547@.9238) and the asym-
rates are available only at the extremes of aspect ratio, for generetric P-F mode (3.79701.3876), but not for the asymmetric
alized plane stressa(b—0) and plane straina/b—=) when cross-sectional bending, or symmetric P-F modes. The single

stress decays exponentially from one end as €kg(, wherek roots ata/b=1 show(a)symmetries, as follows:
are the roots of the well-known Papkovitch-Fadl@-F
(1.6639:0.5717)

eigenequatiorisee[ 3], article 26

A 4
=

Fig. 2 Self-equilibrated twisting moment on the end z=0;
aspect ratio a/b<1

u, v andw are symmetric about both
diagonals, asymmetric about both
coordinate axes

u, v andw are asymmetric about both
diagonals and coordinate axes
4.0408 u, v andw are asymmetric about both
diagonals and coordinate axes

u, v andw are symmetric about both
diagonals and coordinate axes

u, v andw are symmetric about

sin 2kb=+ 2kb=0; (1) (3.8804-1.3623)

the two smallest roots ar&b=2.1062+1.1254, kb=5.3563
+1.5516 for the positive sign in Eq(l), which is the symmetric (2.2391+1.1072)
case, andkb=3.7488+1.3843, kb=6.9500+-1.6761 for the
negative sign, the asymmetric case. In the case of antiplane str&ih9917+ 1.1546)
[4], decay from the loaded edge is as expfz/2b), wheren is both coordinate axes, asymmetric
an integer, implying a slowest decay given by the robt 7/2; about the diagonals
these exact decay rates are shown in the first column The shatfeéach case, there ata)symmetries for each of the three
entries in Table 2 are those that, by virtue of similarity of thelisplacement components.
displacement field, are closest to these known exact solutions, an¢h contrast the modes pertaining to the double roots show a less
are here regarded as generalized P-F or generalized shear magiegeloped pattern di)symmetry; for example,

First, it is noted that the decay rates of the generalized P-F )
modes appear largely insensitive to aspect ratio; thus for the caté$474-0.9238) one mode has andv symmetric about
a/b=<2/3, the real part of the slowest generalized symmetric P-F the y-axis, asymmetric about )
mode exceeds that of the exact plane stress (@1€62 by less the x-axis, no(a)symmetries about diagonal;
than 0.1%, and for/b=4/5 it is less than the plane stress value W no (a)symmetries; the
by 0.5%. The maximum deviation occurs for the square cross other mode hasv symmetric about the
section,a/b=1, at less thant+7%. For the slowest asymmetric x-axis, asymmetric about the
generalized P-F mode, the real part exceeds the plane stress value axis, no(a)symmetries about diagonals;
(3.7489 by less than 3% foa/b<1. uandv show no

For all aspect ratios considered, there is at least one mode (a)symmetries

decays slower than the generalized P-F modes.afbs 1, the
mode associated with the real root is characterized by a bending
of the cross section due to self-equilibrated twisting moment in

the xy-plane, as depicted in Fig. 2. The mode associated with the
complex root is characterized by an axial warping displacement
field reminiscent of Saint-Venant torsion, and hence a stress field
associated with the restraint of torsional warpihgre referred to

as the bi-moment mogle

tg.a}970t 1.3876  one mode hasv symmetric about

one diagonal, asymmetric about the
other;u andv show no(a)symmetries;
the other mode hag andv

asymmetric about thg-axis, symmetric
about they-axis; w shows no
(a)symmetries.

For the casea/b>5/4, Table 2, there are an increasing numbédfow there is planafa)symmetry in respect af ando, or ()sym-
of modes which decay slower than the slowest P-F modes; agaietries for the axial displacemewnt but not both. Thus it appears
the smallest of these modes is characterized by cross-sectidhal the occurrence, or otherwise, of a double decay mode depends
bending, but in fact they are physically the same modes of decay the degree ofa)symmetry in the displacement field.
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Finally, we note in Tald 2 a decay rate which approaches th€)n Source-Limited Dislocations in

slowest antiplane strain shear decay ratklof /2, with an error . .
of less than 0.6% whea/b=10. Nanoindentation

4 Concluding Remarks M. X. Shi

For the rectangular cross section, there are always eigenmo ; ; ;
that decay slower than the Papkovitch-FadeF) modes; typi- %Partment of .Th(.aoretlcal and Applied .MeChamcs’
cally these are modes characterized by a bending of the cr(%g'vers'ty of lllinois at Urbana-Champaign,
section, which would be precluded by plane stress/plane stra#ibana, IL 61801
assumptions. The exception is for a compact cross section, that is,
close to being square, when slowest decay is for a mode assc)(&,i-Huangl

ated with a bi-moment. However, the P-F modes remain impo”@bpartment of Mechanical and Industrial Engineering,

as a means of classification of the various decay modes. : . . .
In discussing the decay rates, attention has focused on the sl L&&pversny of lllinais at Urbana-Champaign,

est, as it is these which validate Saint-Venant's principle; for tHdfbana, IL 61801

square cross section, the slowest Saint-Venant decay is €agnail: huang9@uiuc.edu

exp(—1.663%/b) =exp(—4.706Z/d) whered=2,2b is the sec-

tion diagonal, which is the greatest linear dimension of the cros#. Lj

section; this implie_s that stress level reduces tq Ie;s t.han l%AJIfcoa Technical Center, Alcoa Center, PA 15069
free end value at distan@=d from the free end, indicating that

SVP is clearly applicable. On the other hand, at first sight a vew

small decay rate, such ab=0.0648 for aspect ratia/b= 20, . C. Hwang

Table 2, might suggest that SVP is inapplicable; indeed the strdagpartment of Engineering Mechanics,

level only reduces to 87.8% of its free end value at distanceTsinghua University, Beijing 100084, P.R. China
=2b (that is, distance X plate thicknessfrom the free end. How-

ever, if the decay characteristic is expressed in terms of multiples

of the diagonald=2./401b, decay is as exp{2.5952/d). This

implies stress reduction to less than 7.5% at distaned from The discrete dislocation model is used in this note to investigate

more importantly, the sense in which SVP is understood, is
terms of multiples of the cross section greatest linear dimensi
which is dominated by plate widtha2for this aspect ratio.

dislocation source distribution[DOI: 10.1115/1.1751185

1 Introduction

Nomenclature Nanoindentation has become a major experimental technique to
probe the mechanical properties of materials at the nanoscale,

a, b = semi-width and semi-depth of rectangular cross ! i ) i C i
P g [1,2]. Dislocation glide underneath the nanoindenter is identified

section
d = greatest linear dimension of cross section as the key mechanism of plastic deformation in nanoindentation,
(d=2a%+ b?) [3,4]. Dislocation loops are observed near the edge of the nanoin-
i = (—1)12 denter[4]. The quasi-continuum analys[$], shows that disloca-

tions are indeed generated right underneath the corner of the rect-
angular indenter and then moved into the bulk material. In this
note we present a discrete dislocation analysis to investigate the
effect of dislocation source distribution in nanoindentation, par-
ticularly the source-limited dislocation generation and glide.,

very few sources for dislocation generatioRollowing Shi et al.

[6], we modify the two-dimensional discrete dislocation model of
van der Giessen, Needleman and co-workgts|, for the equi-
librium dislocation analysis by requiring that the glide component
References of the Peach-Koehler force on each dislocation vanishes at each

[1] Klemm, R. L., and Little, R. W., 1970, “The Semi-Infinite Elastic Cylinder time step.
Under Self-Equilibrated End Loading,” SIANSoc. Ind. Appl. Math.J. Appl.
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i
k = decay rate K=In\)
|, = characteristic length
u, v, w = displacement components in tkgy, and
z-directions
X, ¥, z = Cartesian coordinates
decay factor, eigenvalue of transfer matrix

>
Il
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| | Fig. 2 The applied pressure (normalized by the Young's
] 2um | modulus ) versus the indentation depth for the 2~ umX2 um re-
gion in Fig. 1 with 6, 18, 53, and 160 slip planes
Fig. 1 Random distribution of dislocation sources (open

circles ) and obstacles (solid circles ) on slip planes (dashed

lines). There are 18 slip planes in the 2 mX2 um region, with . . . . . .
3 disl)ocation sources aﬁdpll obstacles on é;ch sligplang. The Dislocation annihilation is also accounted for. Two dislocations

pressure is applied over a region of 0.4  um on the top surface. ~ With opposite Burgers vectors on the same slip plane annihilate
when their spacing is less thar 6
The same approach of van der Giessen, Needleman, and co-
workers,[7,8], is used to decompose the problem ifitpan ana-
pressure in the finite loading regid©.4 um) to represent the lytic solution for dislocations in an infinite solid, ari@) a finite
indentation. The bottom surface is also subject to boundary caement solution for a dislocation-free solid with finite bound-
dition u,=0. aries. The finite element method can handle the second problem
The right-half region in Fig. 1 contains 18 slip planes with theery effectively since it does not involve any singularitigs,g].
slip plane spacing 112.5 nm. We have chosen the slip planes gdewever, Our analysis is different in that all dislocations reach
allel to the direction of pressur@n the top surfadesince these equilibrium within each time increment, though they may exit the
slip planes allow dislocations to move downward, which is corgolid (from the top surface or be pinned at obstacles. The dislo-
sistent with that observed by Tadmor et[&]. Initially, the solid ~cation positions are solved iteratively within each time increment
is assumed to be free of mobile dislocations, but to contain uatil the glide component of the Peach-Koehler force vanishes for
random distribution of dislocation sources and point obstaclegvery dislocation[6].
The sources mimic Frank-Read sources and generate a dislocation
dipole when the Peach-Koehler force exceeds a critical valu®@, Results

[6-8]. The obstacles, which could be small precipitates or forGStFigure 1 also shows the dislocation distribution on all 18 slip

of dislocations, pin dislocations and will release them once th : . . \
Peach-Koehler force attains the obstacle strerf/@thg]. p‘?anes in the solid at the pressure 0.&l, 2vhereE is the Young’s

There are three sources for dislocation generatinarked by modulus. The distance between the end of loading region and the
open circles randomly distributed on each slip plane, and theflS2/€st slip plane is 6.25 nm. It is clearly observed that most
strength follows a normal distribution with the mean strengt |slqcat|ons_ are g(_ant_arated on the ?"p plane closest to t_he end of
Tnuc=50MPa and standard deviation 8@c=10 MPa. Once oading region. This is due to the high stress concentration at the

NUC™ - .

e Gice componen o e Peach Koehir Torce exceadpb £r o 02013 BNl 1 fect the poma sese i he drec,
over timetyyc=0.01us, a dislocation dipole is generatéf-8. perp pp P Y

Hereb=0.25 nm is the length of the Burgers vector, and the glio‘;eﬂd of loading region[,9]. The pattern of dislocation distribution

component of the Peach-Koehler force on Kté dislocation is own in Fig. 1 IS similar to the patterns observed in the quasi-
given by continuum analysig,5], and experimentg3,4].

In order to examine the effect of dislocation source distribution
in nanoindentation, we have also studied the same re@on
fX=nK.o.bK, (1) umx2 um) with 6, 53, and 160 slip planes. The slip plane spac-
ings are 337.5 nm, 37.5 nm, and 12.5 nm, respectively. The size of
loading region remains the san@4 um). The number of dislo-
wherenX is the slip plane normahX is the Burgers vector of the cation sources and obstacles also remain the same on each slip
Kth dislocation andr is the stress field excluding the contributionplane(3 and 10, respectivelybut the total number of dislocation
from the Kth dislocation itself. sources and obstacles for 6, 53, and 160 slip planes are approxi-
There are ten obstaclésarked by solid circlesrandomly dis- mately 1/3, 3, and 9 times of those shown in Fig. 1 for 18 slip
tributed on each slip plane, with the obstacle strengfas planes. The distance between the end of loading region and the
=150 MPa. When a dislocation meets an obstacle, it is pinnedriearest slip plane is 106.25 nm for the solid with 6 slip planes,
this obstacle until the glide component of the Peach-Koehler foraeed this distance becomes 6.25 nm for 18, 53, and 160 slip planes.
given in (1) exceedsrogd. On each slip plane there is an addiFigure 2 shows the applied pressure normalized by the Young’s
tional obstacle very close to the bottom surface with very largeodulus versus the indentation depth for above four sets of slip
obstacle strength in order to prevent dislocations from exiting thpdanes, where the indentation depth is the maximum normal dis-
bottom surface. This represerit@ mimic9 the effect of a hard placementunder the pressurat the symmetry line. It is clearly
substrate that blocks dislocations at the film/substrate interfacdserved that the curves for 18, 53, and 160 slip planes are essen-
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